File size: 6,046 Bytes
90fe813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
'''
Downloads models from Hugging Face to models/model-name.

Example:
python download-model.py facebook/opt-1.3b

'''

import argparse
import base64
import json
import multiprocessing
import re
import sys
from pathlib import Path

import requests
import tqdm

parser = argparse.ArgumentParser()
parser.add_argument('MODEL', type=str, default=None, nargs='?')
parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
args = parser.parse_args()

def get_file(args):
    url = args[0]
    output_folder = args[1]
    idx = args[2]
    tot = args[3]

    print(f"Downloading file {idx} of {tot}...")
    r = requests.get(url, stream=True)
    with open(output_folder / Path(url.split('/')[-1]), 'wb') as f:
        total_size = int(r.headers.get('content-length', 0))
        block_size = 1024
        t = tqdm.tqdm(total=total_size, unit='iB', unit_scale=True)
        for data in r.iter_content(block_size):
            t.update(len(data))
            f.write(data)
        t.close()

def sanitize_branch_name(branch_name):
    pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
    if pattern.match(branch_name):
        return branch_name
    else:
        raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")

def select_model_from_default_options():
    models = {
        "Pygmalion 6B original": ("PygmalionAI", "pygmalion-6b", "b8344bb4eb76a437797ad3b19420a13922aaabe1"),
        "Pygmalion 6B main": ("PygmalionAI", "pygmalion-6b", "main"),
        "Pygmalion 6B dev": ("PygmalionAI", "pygmalion-6b", "dev"),
        "Pygmalion 2.7B": ("PygmalionAI", "pygmalion-2.7b", "main"),
        "Pygmalion 1.3B": ("PygmalionAI", "pygmalion-1.3b", "main"),
        "Pygmalion 350m": ("PygmalionAI", "pygmalion-350m", "main"),
        "OPT 6.7b": ("facebook", "opt-6.7b", "main"),
        "OPT 2.7b": ("facebook", "opt-2.7b", "main"),
        "OPT 1.3b": ("facebook", "opt-1.3b", "main"),
        "OPT 350m": ("facebook", "opt-350m", "main"),
    }
    choices = {}

    print("Select the model that you want to download:\n")
    for i,name in enumerate(models):
        char = chr(ord('A')+i)
        choices[char] = name
        print(f"{char}) {name}")
    char = chr(ord('A')+len(models))
    print(f"{char}) None of the above")

    print()
    print("Input> ", end='')
    choice = input()[0].strip().upper()
    if choice == char:
        print("""\nThen type the name of your desired Hugging Face model in the format organization/name.

Examples:
PygmalionAI/pygmalion-6b
facebook/opt-1.3b
""")

        print("Input> ", end='')
        model = input()
        branch = "main"
    else:
        arr = models[choices[choice]]
        model = f"{arr[0]}/{arr[1]}"
        branch = arr[2]

    return model, branch

def get_download_links_from_huggingface(model, branch):
    base = "https://huggingface.co"
    page = f"/api/models/{model}/tree/{branch}?cursor="
    cursor = b""

    links = []
    classifications = []
    has_pytorch = False
    has_safetensors = False
    while True:
        content = requests.get(f"{base}{page}{cursor.decode()}").content

        dict = json.loads(content)
        if len(dict) == 0:
            break

        for i in range(len(dict)):
            fname = dict[i]['path']

            is_pytorch = re.match("pytorch_model.*\.bin", fname)
            is_safetensors = re.match("model.*\.safetensors", fname)
            is_tokenizer = re.match("tokenizer.*\.model", fname)
            is_text = re.match(".*\.(txt|json)", fname) or is_tokenizer

            if any((is_pytorch, is_safetensors, is_text, is_tokenizer)):
                if is_text:
                    links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
                    classifications.append('text')
                    continue
                if not args.text_only:
                    links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
                    if is_safetensors:
                        has_safetensors = True
                        classifications.append('safetensors')
                    elif is_pytorch:
                        has_pytorch = True
                        classifications.append('pytorch')

        cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
        cursor = base64.b64encode(cursor)
        cursor = cursor.replace(b'=', b'%3D')

    # If both pytorch and safetensors are available, download safetensors only
    if has_pytorch and has_safetensors:
        for i in range(len(classifications)-1, -1, -1):
            if classifications[i] == 'pytorch':
                links.pop(i)

    return links

if __name__ == '__main__':
    model = args.MODEL
    branch = args.branch
    if model is None:
        model, branch = select_model_from_default_options()
    else:
        if model[-1] == '/':
            model = model[:-1]
            branch = args.branch
        if branch is None:
            branch = "main"
        else:
            try:
                branch = sanitize_branch_name(branch)
            except ValueError as err_branch:
                print(f"Error: {err_branch}")
                sys.exit()
    if branch != 'main':
        output_folder = Path("models") / (model.split('/')[-1] + f'_{branch}')
    else:
        output_folder = Path("models") / model.split('/')[-1]
    if not output_folder.exists():
        output_folder.mkdir()

    links = get_download_links_from_huggingface(model, branch)

    # Downloading the files
    print(f"Downloading the model to {output_folder}")
    pool = multiprocessing.Pool(processes=args.threads)
    results = pool.map(get_file, [[links[i], output_folder, i+1, len(links)] for i in range(len(links))])
    pool.close()
    pool.join()