|
import gc |
|
from queue import Queue |
|
from threading import Thread |
|
|
|
import torch |
|
import transformers |
|
|
|
import modules.shared as shared |
|
|
|
|
|
class _SentinelTokenStoppingCriteria(transformers.StoppingCriteria): |
|
|
|
def __init__(self, sentinel_token_ids: torch.LongTensor, |
|
starting_idx: int): |
|
transformers.StoppingCriteria.__init__(self) |
|
self.sentinel_token_ids = sentinel_token_ids |
|
self.starting_idx = starting_idx |
|
|
|
def __call__(self, input_ids: torch.LongTensor, |
|
_scores: torch.FloatTensor) -> bool: |
|
for sample in input_ids: |
|
trimmed_sample = sample[self.starting_idx:] |
|
|
|
if trimmed_sample.shape[-1] < self.sentinel_token_ids.shape[-1]: |
|
continue |
|
|
|
for window in trimmed_sample.unfold( |
|
0, self.sentinel_token_ids.shape[-1], 1): |
|
if torch.all(torch.eq(self.sentinel_token_ids, window)): |
|
return True |
|
return False |
|
|
|
class Stream(transformers.StoppingCriteria): |
|
def __init__(self, callback_func=None): |
|
self.callback_func = callback_func |
|
|
|
def __call__(self, input_ids, scores) -> bool: |
|
if self.callback_func is not None: |
|
self.callback_func(input_ids[0]) |
|
return False |
|
|
|
class Iteratorize: |
|
|
|
""" |
|
Transforms a function that takes a callback |
|
into a lazy iterator (generator). |
|
""" |
|
|
|
def __init__(self, func, kwargs={}, callback=None): |
|
self.mfunc=func |
|
self.c_callback=callback |
|
self.q = Queue() |
|
self.sentinel = object() |
|
self.kwargs = kwargs |
|
self.stop_now = False |
|
|
|
def _callback(val): |
|
if self.stop_now: |
|
raise ValueError |
|
self.q.put(val) |
|
|
|
def gentask(): |
|
try: |
|
ret = self.mfunc(callback=_callback, **self.kwargs) |
|
except ValueError: |
|
pass |
|
clear_torch_cache() |
|
self.q.put(self.sentinel) |
|
if self.c_callback: |
|
self.c_callback(ret) |
|
|
|
self.thread = Thread(target=gentask) |
|
self.thread.start() |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
obj = self.q.get(True,None) |
|
if obj is self.sentinel: |
|
raise StopIteration |
|
else: |
|
return obj |
|
|
|
def __del__(self): |
|
clear_torch_cache() |
|
|
|
def __enter__(self): |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb): |
|
self.stop_now = True |
|
clear_torch_cache() |
|
|
|
def clear_torch_cache(): |
|
gc.collect() |
|
if not shared.args.cpu: |
|
torch.cuda.empty_cache() |
|
|