|
import json |
|
import os |
|
import time |
|
import zipfile |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
import transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
import modules.shared as shared |
|
|
|
transformers.logging.set_verbosity_error() |
|
|
|
local_rank = None |
|
|
|
if shared.args.flexgen: |
|
from flexgen.flex_opt import (CompressionConfig, ExecutionEnv, OptLM, |
|
Policy, str2bool) |
|
|
|
if shared.args.deepspeed: |
|
import deepspeed |
|
from transformers.deepspeed import (HfDeepSpeedConfig, |
|
is_deepspeed_zero3_enabled) |
|
|
|
from modules.deepspeed_parameters import generate_ds_config |
|
|
|
|
|
local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0")) |
|
world_size = int(os.getenv("WORLD_SIZE", "1")) |
|
torch.cuda.set_device(local_rank) |
|
deepspeed.init_distributed() |
|
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir) |
|
dschf = HfDeepSpeedConfig(ds_config) |
|
|
|
|
|
def load_model(model_name): |
|
print(f"Loading {model_name}...") |
|
t0 = time.time() |
|
|
|
shared.is_RWKV = model_name.lower().startswith('rwkv-') |
|
|
|
|
|
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.gptq_bits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]): |
|
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')): |
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True) |
|
else: |
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda() |
|
|
|
|
|
elif shared.args.flexgen: |
|
|
|
env = ExecutionEnv.create(shared.args.disk_cache_dir) |
|
|
|
|
|
policy = Policy(1, 1, |
|
shared.args.percent[0], shared.args.percent[1], |
|
shared.args.percent[2], shared.args.percent[3], |
|
shared.args.percent[4], shared.args.percent[5], |
|
overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight, |
|
cpu_cache_compute=False, attn_sparsity=1.0, |
|
compress_weight=shared.args.compress_weight, |
|
comp_weight_config=CompressionConfig( |
|
num_bits=4, group_size=64, |
|
group_dim=0, symmetric=False), |
|
compress_cache=False, |
|
comp_cache_config=CompressionConfig( |
|
num_bits=4, group_size=64, |
|
group_dim=2, symmetric=False)) |
|
|
|
model = OptLM(f"facebook/{shared.model_name}", env, "models", policy) |
|
|
|
|
|
elif shared.args.deepspeed: |
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16) |
|
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0] |
|
model.module.eval() |
|
print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}") |
|
|
|
|
|
elif shared.is_RWKV: |
|
from modules.RWKV import RWKVModel, RWKVTokenizer |
|
|
|
model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda") |
|
tokenizer = RWKVTokenizer.from_pretrained(Path('models')) |
|
|
|
return model, tokenizer |
|
|
|
|
|
elif shared.args.gptq_bits > 0: |
|
from modules.GPTQ_loader import load_quantized |
|
|
|
model = load_quantized(model_name) |
|
|
|
|
|
else: |
|
command = "AutoModelForCausalLM.from_pretrained" |
|
params = ["low_cpu_mem_usage=True"] |
|
if not shared.args.cpu and not torch.cuda.is_available(): |
|
print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n") |
|
shared.args.cpu = True |
|
|
|
if shared.args.cpu: |
|
params.append("low_cpu_mem_usage=True") |
|
params.append("torch_dtype=torch.float32") |
|
else: |
|
params.append("device_map='auto'") |
|
params.append("load_in_8bit=True" if shared.args.load_in_8bit else "torch_dtype=torch.bfloat16" if shared.args.bf16 else "torch_dtype=torch.float16") |
|
|
|
if shared.args.gpu_memory: |
|
memory_map = shared.args.gpu_memory |
|
max_memory = f"max_memory={{0: '{memory_map[0]}GiB'" |
|
for i in range(1, len(memory_map)): |
|
max_memory += (f", {i}: '{memory_map[i]}GiB'") |
|
max_memory += (f", 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}") |
|
params.append(max_memory) |
|
elif not shared.args.load_in_8bit: |
|
total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024)) |
|
suggestion = round((total_mem-1000)/1000)*1000 |
|
if total_mem-suggestion < 800: |
|
suggestion -= 1000 |
|
suggestion = int(round(suggestion/1000)) |
|
print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m") |
|
params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}") |
|
if shared.args.disk: |
|
params.append(f"offload_folder='{shared.args.disk_cache_dir}'") |
|
|
|
command = f"{command}(Path(f'models/{shared.model_name}'), {', '.join(set(params))})" |
|
model = eval(command) |
|
|
|
|
|
if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path("models/gpt-j-6B/").exists(): |
|
tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/")) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/")) |
|
tokenizer.truncation_side = 'left' |
|
|
|
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.") |
|
return model, tokenizer |
|
|
|
def load_soft_prompt(name): |
|
if name == 'None': |
|
shared.soft_prompt = False |
|
shared.soft_prompt_tensor = None |
|
else: |
|
with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf: |
|
zf.extract('tensor.npy') |
|
zf.extract('meta.json') |
|
j = json.loads(open('meta.json', 'r').read()) |
|
print(f"\nLoading the softprompt \"{name}\".") |
|
for field in j: |
|
if field != 'name': |
|
if type(j[field]) is list: |
|
print(f"{field}: {', '.join(j[field])}") |
|
else: |
|
print(f"{field}: {j[field]}") |
|
print() |
|
tensor = np.load('tensor.npy') |
|
Path('tensor.npy').unlink() |
|
Path('meta.json').unlink() |
|
tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype) |
|
tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1])) |
|
|
|
shared.soft_prompt = True |
|
shared.soft_prompt_tensor = tensor |
|
|
|
return name |
|
|