Spaces:
Running
on
Zero
Running
on
Zero
NightRaven109
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,115 +2,52 @@ import os
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import spaces
|
5 |
-
import numpy as np
|
6 |
from PIL import Image
|
7 |
-
import safetensors.torch
|
8 |
from huggingface_hub import snapshot_download
|
|
|
|
|
9 |
from accelerate import Accelerator
|
10 |
-
from accelerate.utils import set_seed
|
11 |
-
from diffusers import (
|
12 |
-
AutoencoderKL,
|
13 |
-
DDPMScheduler,
|
14 |
-
UNet2DConditionModel,
|
15 |
-
)
|
16 |
-
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
|
17 |
-
from models.controlnet import ControlNetModel
|
18 |
-
from pipelines.pipeline_ccsr import StableDiffusionControlNetPipeline
|
19 |
-
from myutils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
|
20 |
|
21 |
-
# Initialize global variables
|
22 |
pipeline = None
|
23 |
generator = None
|
24 |
accelerator = None
|
25 |
-
|
26 |
-
|
27 |
-
def
|
28 |
-
|
29 |
-
scheduler = DDPMScheduler.from_pretrained(
|
30 |
-
model_path,
|
31 |
-
subfolder="stable-diffusion-2-1-base/scheduler"
|
32 |
-
)
|
33 |
-
|
34 |
-
# Load models
|
35 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
36 |
-
model_path,
|
37 |
-
subfolder="stable-diffusion-2-1-base/text_encoder"
|
38 |
-
)
|
39 |
-
|
40 |
-
tokenizer = CLIPTokenizer.from_pretrained(
|
41 |
-
model_path,
|
42 |
-
subfolder="stable-diffusion-2-1-base/tokenizer"
|
43 |
-
)
|
44 |
-
|
45 |
-
feature_extractor = CLIPImageProcessor.from_pretrained(
|
46 |
-
os.path.join(model_path, "stable-diffusion-2-1-base/feature_extractor")
|
47 |
-
)
|
48 |
-
|
49 |
-
unet = UNet2DConditionModel.from_pretrained(
|
50 |
-
model_path,
|
51 |
-
subfolder="stable-diffusion-2-1-base/unet"
|
52 |
-
)
|
53 |
-
|
54 |
-
controlnet = ControlNetModel.from_pretrained(
|
55 |
-
model_path,
|
56 |
-
subfolder="Controlnet"
|
57 |
-
)
|
58 |
-
|
59 |
-
vae = AutoencoderKL.from_pretrained(
|
60 |
-
model_path,
|
61 |
-
subfolder="vae"
|
62 |
-
)
|
63 |
-
|
64 |
-
# Freeze models
|
65 |
-
for model in [vae, text_encoder, unet, controlnet]:
|
66 |
-
model.requires_grad_(False)
|
67 |
-
|
68 |
-
# Initialize pipeline
|
69 |
-
pipeline = StableDiffusionControlNetPipeline(
|
70 |
-
vae=vae,
|
71 |
-
text_encoder=text_encoder,
|
72 |
-
tokenizer=tokenizer,
|
73 |
-
feature_extractor=feature_extractor,
|
74 |
-
unet=unet,
|
75 |
-
controlnet=controlnet,
|
76 |
-
scheduler=scheduler,
|
77 |
-
safety_checker=None,
|
78 |
-
requires_safety_checker=False,
|
79 |
-
)
|
80 |
-
|
81 |
-
# Set weight dtype based on mixed precision
|
82 |
-
weight_dtype = torch.float32
|
83 |
-
if accelerator.mixed_precision == "fp16":
|
84 |
-
weight_dtype = torch.float16
|
85 |
-
elif accelerator.mixed_precision == "bf16":
|
86 |
-
weight_dtype = torch.bfloat16
|
87 |
-
|
88 |
-
# Move models to accelerator device with appropriate dtype
|
89 |
-
for model in [text_encoder, vae, unet, controlnet]:
|
90 |
-
model.to(accelerator.device, dtype=weight_dtype)
|
91 |
-
|
92 |
-
return pipeline
|
93 |
|
94 |
@spaces.GPU
|
95 |
def initialize_models():
|
96 |
-
global pipeline, generator, accelerator
|
97 |
|
98 |
-
# Initialize accelerator
|
99 |
-
accelerator = Accelerator(
|
100 |
-
mixed_precision="fp16",
|
101 |
-
gradient_accumulation_steps=1
|
102 |
-
)
|
103 |
-
|
104 |
try:
|
105 |
-
# Download
|
106 |
model_path = snapshot_download(
|
107 |
repo_id="NightRaven109/CCSRModels",
|
108 |
token=os.environ['Read2']
|
109 |
)
|
110 |
-
|
111 |
-
# Load pipeline using the original loading function
|
112 |
-
pipeline = load_pipeline(accelerator, model_path)
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
# Initialize generator
|
115 |
generator = torch.Generator(device=accelerator.device)
|
116 |
|
@@ -137,72 +74,83 @@ def process_image(
|
|
137 |
if pipeline is None:
|
138 |
if not initialize_models():
|
139 |
return None
|
140 |
-
|
141 |
try:
|
142 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
if seed is not None:
|
144 |
generator.manual_seed(seed)
|
145 |
-
|
146 |
# Process input image
|
147 |
validation_image = Image.fromarray(input_image)
|
148 |
ori_width, ori_height = validation_image.size
|
149 |
|
150 |
-
# Resize logic
|
151 |
resize_flag = False
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
if ori_width < process_size//rscale or ori_height < process_size//rscale:
|
156 |
-
scale = (process_size//rscale)/min(ori_width, ori_height)
|
157 |
-
tmp_image = validation_image.resize((round(scale*ori_width), round(scale*ori_height)))
|
158 |
-
validation_image = tmp_image
|
159 |
resize_flag = True
|
160 |
|
161 |
-
validation_image = validation_image.resize((validation_image.size[0]*
|
162 |
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
|
163 |
width, height = validation_image.size
|
164 |
-
|
165 |
-
# Move pipeline to GPU for processing
|
166 |
-
pipeline.to(accelerator.device)
|
167 |
-
|
168 |
# Generate image
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
image = output.images[0]
|
191 |
|
192 |
# Apply color fixing if specified
|
193 |
-
if
|
194 |
-
|
|
|
195 |
image = fix_func(image, validation_image)
|
196 |
|
197 |
if resize_flag:
|
198 |
-
image = image.resize((ori_width*
|
199 |
-
|
200 |
-
# Move pipeline back to CPU
|
201 |
-
pipeline.to("cpu")
|
202 |
-
torch.cuda.empty_cache()
|
203 |
-
|
204 |
return image
|
205 |
-
|
206 |
except Exception as e:
|
207 |
print(f"Error processing image: {str(e)}")
|
208 |
return None
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import spaces
|
|
|
5 |
from PIL import Image
|
|
|
6 |
from huggingface_hub import snapshot_download
|
7 |
+
from test_ccsr_tile import main, load_pipeline
|
8 |
+
import argparse
|
9 |
from accelerate import Accelerator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Initialize global variables
|
12 |
pipeline = None
|
13 |
generator = None
|
14 |
accelerator = None
|
15 |
+
|
16 |
+
class Args:
|
17 |
+
def __init__(self, **kwargs):
|
18 |
+
self.__dict__.update(kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
@spaces.GPU
|
21 |
def initialize_models():
|
22 |
+
global pipeline, generator, accelerator
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
try:
|
25 |
+
# Download model repository
|
26 |
model_path = snapshot_download(
|
27 |
repo_id="NightRaven109/CCSRModels",
|
28 |
token=os.environ['Read2']
|
29 |
)
|
|
|
|
|
|
|
30 |
|
31 |
+
# Set up default arguments
|
32 |
+
args = Args(
|
33 |
+
pretrained_model_path=os.path.join(model_path, "stable-diffusion-2-1-base"),
|
34 |
+
controlnet_model_path=os.path.join(model_path, "Controlnet"),
|
35 |
+
vae_model_path=os.path.join(model_path, "vae"),
|
36 |
+
mixed_precision="fp16",
|
37 |
+
tile_vae=False,
|
38 |
+
sample_method="ddpm",
|
39 |
+
vae_encoder_tile_size=1024,
|
40 |
+
vae_decoder_tile_size=224
|
41 |
+
)
|
42 |
+
|
43 |
+
# Initialize accelerator
|
44 |
+
accelerator = Accelerator(
|
45 |
+
mixed_precision=args.mixed_precision,
|
46 |
+
)
|
47 |
+
|
48 |
+
# Load pipeline
|
49 |
+
pipeline = load_pipeline(args, accelerator, enable_xformers_memory_efficient_attention=False)
|
50 |
+
|
51 |
# Initialize generator
|
52 |
generator = torch.Generator(device=accelerator.device)
|
53 |
|
|
|
74 |
if pipeline is None:
|
75 |
if not initialize_models():
|
76 |
return None
|
77 |
+
|
78 |
try:
|
79 |
+
# Create args object with all necessary parameters
|
80 |
+
args = Args(
|
81 |
+
added_prompt=prompt,
|
82 |
+
negative_prompt=negative_prompt,
|
83 |
+
guidance_scale=guidance_scale,
|
84 |
+
conditioning_scale=conditioning_scale,
|
85 |
+
num_inference_steps=num_inference_steps,
|
86 |
+
seed=seed,
|
87 |
+
upscale=upscale_factor,
|
88 |
+
process_size=512,
|
89 |
+
align_method=color_fix_method,
|
90 |
+
t_max=0.6666,
|
91 |
+
t_min=0.0,
|
92 |
+
tile_diffusion=False,
|
93 |
+
tile_diffusion_size=None,
|
94 |
+
tile_diffusion_stride=None,
|
95 |
+
start_steps=999,
|
96 |
+
start_point='lr',
|
97 |
+
use_vae_encode_condition=False,
|
98 |
+
sample_times=1
|
99 |
+
)
|
100 |
+
|
101 |
+
# Set seed if provided
|
102 |
if seed is not None:
|
103 |
generator.manual_seed(seed)
|
104 |
+
|
105 |
# Process input image
|
106 |
validation_image = Image.fromarray(input_image)
|
107 |
ori_width, ori_height = validation_image.size
|
108 |
|
109 |
+
# Resize logic
|
110 |
resize_flag = False
|
111 |
+
if ori_width < args.process_size//args.upscale or ori_height < args.process_size//args.upscale:
|
112 |
+
scale = (args.process_size//args.upscale)/min(ori_width, ori_height)
|
113 |
+
validation_image = validation_image.resize((round(scale*ori_width), round(scale*ori_height)))
|
|
|
|
|
|
|
|
|
114 |
resize_flag = True
|
115 |
|
116 |
+
validation_image = validation_image.resize((validation_image.size[0]*args.upscale, validation_image.size[1]*args.upscale))
|
117 |
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
|
118 |
width, height = validation_image.size
|
119 |
+
|
|
|
|
|
|
|
120 |
# Generate image
|
121 |
+
inference_time, output = pipeline(
|
122 |
+
args.t_max,
|
123 |
+
args.t_min,
|
124 |
+
args.tile_diffusion,
|
125 |
+
args.tile_diffusion_size,
|
126 |
+
args.tile_diffusion_stride,
|
127 |
+
args.added_prompt,
|
128 |
+
validation_image,
|
129 |
+
num_inference_steps=args.num_inference_steps,
|
130 |
+
generator=generator,
|
131 |
+
height=height,
|
132 |
+
width=width,
|
133 |
+
guidance_scale=args.guidance_scale,
|
134 |
+
negative_prompt=args.negative_prompt,
|
135 |
+
conditioning_scale=args.conditioning_scale,
|
136 |
+
start_steps=args.start_steps,
|
137 |
+
start_point=args.start_point,
|
138 |
+
use_vae_encode_condition=args.use_vae_encode_condition,
|
139 |
+
)
|
140 |
+
|
|
|
141 |
image = output.images[0]
|
142 |
|
143 |
# Apply color fixing if specified
|
144 |
+
if args.align_method != "none":
|
145 |
+
from myutils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
|
146 |
+
fix_func = wavelet_color_fix if args.align_method == "wavelet" else adain_color_fix
|
147 |
image = fix_func(image, validation_image)
|
148 |
|
149 |
if resize_flag:
|
150 |
+
image = image.resize((ori_width*args.upscale, ori_height*args.upscale))
|
151 |
+
|
|
|
|
|
|
|
|
|
152 |
return image
|
153 |
+
|
154 |
except Exception as e:
|
155 |
print(f"Error processing image: {str(e)}")
|
156 |
return None
|