News-Finder / app.py
Nirav-Khanpara's picture
Update app.py
ced385d
import os
import streamlit as st
import pickle
import time
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import UnstructuredURLLoader
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.llms import GooglePalm
from langchain.vectorstores import FAISS
from dotenv import load_dotenv
load_dotenv() # take environment variables from .env (especially openai api key)
st.title("News Research Tool πŸ“ˆ")
st.sidebar.title("News Article URLs")
urls = []
for i in range(3):
url = st.sidebar.text_input(f"URL {i+1}")
if url:
urls.append(url)
process_url_clicked = st.sidebar.button("Process URLs")
file_path = "faiss_store_openai.pkl"
main_placeholder = st.empty()
llm = GooglePalm(temperature=0.9)
if process_url_clicked:
# load data
loader = UnstructuredURLLoader(urls=urls)
main_placeholder.text("Data Loading...Started...βœ…βœ…βœ…")
data = loader.load()
# split data
text_splitter = RecursiveCharacterTextSplitter(
separators=['\n\n', '\n', '.', ','],
chunk_size=500
)
main_placeholder.text("Text Splitter...Started...βœ…βœ…βœ…")
docs = text_splitter.split_documents(data)
# create embeddings and save it to FAISS index
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
main_placeholder.text("Embedding Vector Started Building...βœ…βœ…βœ…")
vectorstore_openai = FAISS.from_documents(docs, embeddings)
# Save the FAISS index to a pickle file
with open(file_path, "wb") as f:
pickle.dump(vectorstore_openai, f)
query = main_placeholder.text_input("Question: ")
if query:
if os.path.exists(file_path):
with open(file_path, "rb") as f:
vectorstore = pickle.load(f)
prompt_template = """
<context>
{context}
</context>
Question: {question}
Assistant:"""
prompt = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 1}),
return_source_documents=True,
chain_type_kwargs={"prompt": prompt}
)
result = chain({"query": query})
# result will be a dictionary of this format --> {"answer": "", "sources": [] }
st.header("Answer")
st.write(result["result"])
# Display sources, if available
sources = result.get("sources", "")
if sources:
st.subheader("Sources:")
sources_list = sources.split("\n") # Split the sources by newline
for source in sources_list:
st.write(source)