Spaces:
Sleeping
Sleeping
delete.py
Browse files
app.py
DELETED
@@ -1,96 +0,0 @@
|
|
1 |
-
from dotenv import load_dotenv
|
2 |
-
load_dotenv()
|
3 |
-
|
4 |
-
import os
|
5 |
-
import pickle
|
6 |
-
import streamlit as st
|
7 |
-
from scanned_pdf_parser import get_text_from_scanned_pdf
|
8 |
-
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
9 |
-
from langchain.llms import GooglePalm
|
10 |
-
from langchain.prompts import PromptTemplate
|
11 |
-
from langchain.chains import RetrievalQA
|
12 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
-
from langchain.document_loaders import PyPDFLoader
|
14 |
-
from langchain.vectorstores import FAISS
|
15 |
-
from langchain.docstore.document import Document
|
16 |
-
|
17 |
-
llm = GooglePalm(temperature=0.9)
|
18 |
-
|
19 |
-
st.title("PDF Query Tool")
|
20 |
-
st.write("Upload your PDF and ask question from it")
|
21 |
-
|
22 |
-
uploaded_file = st.file_uploader("Choose a PDF file")
|
23 |
-
main_placeholder = st.empty()
|
24 |
-
second_placeholder = st.empty()
|
25 |
-
|
26 |
-
|
27 |
-
if uploaded_file:
|
28 |
-
filename = uploaded_file.name
|
29 |
-
if not filename.endswith(('.pdf', '.PDF')):
|
30 |
-
main_placeholder.warning("Choose PDF Document !!!")
|
31 |
-
exit()
|
32 |
-
elif not os.path.exists(uploaded_file.name):
|
33 |
-
main_placeholder.text("Data Loading Started...βββ")
|
34 |
-
with open(f'{uploaded_file.name}', 'wb') as f:
|
35 |
-
f.write(uploaded_file.getbuffer())
|
36 |
-
|
37 |
-
pdf_loader = PyPDFLoader(uploaded_file.name)
|
38 |
-
documents = pdf_loader.load()
|
39 |
-
|
40 |
-
raw_text = ''
|
41 |
-
for doc in documents:
|
42 |
-
raw_text += doc.page_content
|
43 |
-
|
44 |
-
if len(raw_text) < 10:
|
45 |
-
main_placeholder.text("It looks like Scanned PDF, No worries converting it...βββ")
|
46 |
-
raw_text = get_text_from_scanned_pdf(uploaded_file.name)
|
47 |
-
|
48 |
-
main_placeholder.text("Splitting text into smaller chunks...βββ")
|
49 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
50 |
-
separators=['\n\n', '\n', '.', ','],
|
51 |
-
chunk_size=2000
|
52 |
-
)
|
53 |
-
|
54 |
-
texts = text_splitter.split_text(raw_text)
|
55 |
-
docs = [Document(page_content=t) for t in texts]
|
56 |
-
|
57 |
-
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
|
58 |
-
main_placeholder.text("Storing data into Vector Database...βββ")
|
59 |
-
vectorstore = FAISS.from_documents(docs, embeddings)
|
60 |
-
|
61 |
-
# Save the FAISS index to a pickle file
|
62 |
-
with open(f'vector_store_{uploaded_file.name}.pkl', "wb") as f:
|
63 |
-
pickle.dump(vectorstore, f)
|
64 |
-
|
65 |
-
main_placeholder.text("Data Loading Completed...β
β
β
")
|
66 |
-
|
67 |
-
|
68 |
-
query = second_placeholder.text_input("Question:")
|
69 |
-
if query:
|
70 |
-
if os.path.exists(f'vector_store_{uploaded_file.name}.pkl'):
|
71 |
-
with open(f'vector_store_{uploaded_file.name}.pkl', "rb") as f:
|
72 |
-
vector_store = pickle.load(f)
|
73 |
-
|
74 |
-
prompt_template = """
|
75 |
-
<context>
|
76 |
-
{context}
|
77 |
-
</context>
|
78 |
-
Question: {question}
|
79 |
-
Assistant:"""
|
80 |
-
prompt = PromptTemplate(
|
81 |
-
template=prompt_template, input_variables=["context", "question"]
|
82 |
-
)
|
83 |
-
|
84 |
-
chain = RetrievalQA.from_chain_type(
|
85 |
-
llm=llm,
|
86 |
-
chain_type="stuff",
|
87 |
-
retriever=vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 1}),
|
88 |
-
return_source_documents=True,
|
89 |
-
chain_type_kwargs={"prompt": prompt}
|
90 |
-
)
|
91 |
-
|
92 |
-
with st.spinner("Searching for the answer..."):
|
93 |
-
result = chain({"query": query})
|
94 |
-
st.header("Answer")
|
95 |
-
st.write(result["result"])
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|