kevinwang676
commited on
Commit
·
ac403c1
1
Parent(s):
46c1226
Update app.py
Browse files
app.py
CHANGED
@@ -1,313 +1,397 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
from bark.generation import SUPPORTED_LANGS
|
6 |
-
from bark import SAMPLE_RATE, generate_audio
|
7 |
-
from scipy.io.wavfile import write as write_wav
|
8 |
-
from datetime import datetime
|
9 |
-
|
10 |
-
import shutil
|
11 |
import gradio as gr
|
12 |
-
|
13 |
import sys
|
14 |
-
|
15 |
-
import string
|
16 |
-
import time
|
17 |
-
import argparse
|
18 |
-
import json
|
19 |
-
|
20 |
import numpy as np
|
21 |
-
|
22 |
-
# from IPython.display import Audio
|
23 |
-
|
24 |
import torch
|
|
|
|
|
25 |
|
26 |
-
from
|
27 |
-
from
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
from TTS.utils.audio import AudioProcessor
|
32 |
-
|
33 |
-
|
34 |
-
from TTS.tts.models import setup_model
|
35 |
-
from TTS.config import load_config
|
36 |
-
from TTS.tts.models.vits import *
|
37 |
-
|
38 |
-
from TTS.tts.utils.speakers import SpeakerManager
|
39 |
-
from pydub import AudioSegment
|
40 |
-
|
41 |
-
# from google.colab import files
|
42 |
-
import librosa
|
43 |
-
|
44 |
-
from scipy.io.wavfile import write, read
|
45 |
-
|
46 |
-
import subprocess
|
47 |
-
|
48 |
-
'''
|
49 |
-
from google.colab import drive
|
50 |
-
drive.mount('/content/drive')
|
51 |
-
src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar')
|
52 |
-
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar')
|
53 |
-
shutil.copy(src_path, dst_path)
|
54 |
-
'''
|
55 |
-
|
56 |
-
TTS_PATH = "TTS/"
|
57 |
-
|
58 |
-
# add libraries into environment
|
59 |
-
sys.path.append(TTS_PATH) # set this if TTS is not installed globally
|
60 |
-
|
61 |
-
# Paths definition
|
62 |
-
|
63 |
-
OUT_PATH = 'out/'
|
64 |
-
|
65 |
-
# create output path
|
66 |
-
os.makedirs(OUT_PATH, exist_ok=True)
|
67 |
-
|
68 |
-
# model vars
|
69 |
-
MODEL_PATH = 'best_model.pth.tar'
|
70 |
-
CONFIG_PATH = 'config.json'
|
71 |
-
TTS_LANGUAGES = "language_ids.json"
|
72 |
-
TTS_SPEAKERS = "speakers.json"
|
73 |
-
USE_CUDA = torch.cuda.is_available()
|
74 |
-
|
75 |
-
# load the config
|
76 |
-
C = load_config(CONFIG_PATH)
|
77 |
-
|
78 |
-
# load the audio processor
|
79 |
-
ap = AudioProcessor(**C.audio)
|
80 |
-
|
81 |
-
speaker_embedding = None
|
82 |
-
|
83 |
-
C.model_args['d_vector_file'] = TTS_SPEAKERS
|
84 |
-
C.model_args['use_speaker_encoder_as_loss'] = False
|
85 |
-
|
86 |
-
model = setup_model(C)
|
87 |
-
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
|
88 |
-
# print(model.language_manager.num_languages, model.embedded_language_dim)
|
89 |
-
# print(model.emb_l)
|
90 |
-
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
|
91 |
-
# remove speaker encoder
|
92 |
-
model_weights = cp['model'].copy()
|
93 |
-
for key in list(model_weights.keys()):
|
94 |
-
if "speaker_encoder" in key:
|
95 |
-
del model_weights[key]
|
96 |
-
|
97 |
-
model.load_state_dict(model_weights)
|
98 |
-
|
99 |
-
model.eval()
|
100 |
-
|
101 |
-
if USE_CUDA:
|
102 |
-
model = model.cuda()
|
103 |
-
|
104 |
-
# synthesize voice
|
105 |
-
use_griffin_lim = False
|
106 |
-
|
107 |
-
# Paths definition
|
108 |
-
|
109 |
-
CONFIG_SE_PATH = "config_se.json"
|
110 |
-
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"
|
111 |
-
|
112 |
-
# Load the Speaker encoder
|
113 |
-
|
114 |
-
SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)
|
115 |
-
|
116 |
-
# Define helper function
|
117 |
-
|
118 |
-
def compute_spec(ref_file):
|
119 |
-
y, sr = librosa.load(ref_file, sr=ap.sample_rate)
|
120 |
-
spec = ap.spectrogram(y)
|
121 |
-
spec = torch.FloatTensor(spec).unsqueeze(0)
|
122 |
-
return spec
|
123 |
-
|
124 |
-
|
125 |
-
def voice_conversion(ta, ra, da):
|
126 |
-
|
127 |
-
target_audio = 'target.wav'
|
128 |
-
reference_audio = 'reference.wav'
|
129 |
-
driving_audio = 'driving.wav'
|
130 |
-
|
131 |
-
write(target_audio, ta[0], ta[1])
|
132 |
-
write(reference_audio, ra[0], ra[1])
|
133 |
-
write(driving_audio, da[0], da[1])
|
134 |
-
|
135 |
-
# !ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f
|
136 |
-
# !ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f
|
137 |
-
# !ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f
|
138 |
-
|
139 |
-
files = [target_audio, reference_audio, driving_audio]
|
140 |
-
|
141 |
-
for file in files:
|
142 |
-
subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"])
|
143 |
-
|
144 |
-
# ta_ = read(target_audio)
|
145 |
-
|
146 |
-
target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio])
|
147 |
-
target_emb = torch.FloatTensor(target_emb).unsqueeze(0)
|
148 |
-
|
149 |
-
driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio])
|
150 |
-
driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0)
|
151 |
-
|
152 |
-
# Convert the voice
|
153 |
-
|
154 |
-
driving_spec = compute_spec(driving_audio)
|
155 |
-
y_lengths = torch.tensor([driving_spec.size(-1)])
|
156 |
-
if USE_CUDA:
|
157 |
-
ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda())
|
158 |
-
ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy()
|
159 |
-
else:
|
160 |
-
ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb)
|
161 |
-
ref_wav_voc = ref_wav_voc.squeeze().detach().numpy()
|
162 |
-
|
163 |
-
# print("Reference Audio after decoder:")
|
164 |
-
# IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate))
|
165 |
-
|
166 |
-
return (ap.sample_rate, ref_wav_voc)
|
167 |
-
|
168 |
-
def generate_text_to_speech(text_prompt, selected_speaker, text_temp, waveform_temp):
|
169 |
-
audio_array = generate_audio(text_prompt, selected_speaker, text_temp, waveform_temp)
|
170 |
-
|
171 |
-
now = datetime.now()
|
172 |
-
date_str = now.strftime("%m-%d-%Y")
|
173 |
-
time_str = now.strftime("%H-%M-%S")
|
174 |
-
|
175 |
-
outputs_folder = os.path.join(os.getcwd(), "outputs")
|
176 |
-
if not os.path.exists(outputs_folder):
|
177 |
-
os.makedirs(outputs_folder)
|
178 |
-
|
179 |
-
sub_folder = os.path.join(outputs_folder, date_str)
|
180 |
-
if not os.path.exists(sub_folder):
|
181 |
-
os.makedirs(sub_folder)
|
182 |
-
|
183 |
-
file_name = f"audio_{time_str}.wav"
|
184 |
-
file_path = os.path.join(sub_folder, file_name)
|
185 |
-
write_wav(file_path, SAMPLE_RATE, audio_array)
|
186 |
-
|
187 |
-
return file_path
|
188 |
-
|
189 |
-
|
190 |
-
speakers_list = []
|
191 |
-
|
192 |
-
for lang, code in SUPPORTED_LANGS:
|
193 |
-
for n in range(10):
|
194 |
-
speakers_list.append(f"{code}_speaker_{n}")
|
195 |
-
|
196 |
-
examples1 = [["ref.wav", "Bark.wav", "Bark.wav"]]
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
)
|
208 |
|
209 |
-
with gr.Row().style(equal_height=True):
|
210 |
-
inp1 = gr.Textbox(label="Input Text", lines=4, placeholder="Enter text here...")
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
-
|
221 |
-
0.1, 1.0, value=0.7, label="Waveform Temperature", info="1.0 more diverse, 0.1 more conservative"
|
222 |
-
)
|
223 |
-
with gr.Row().style(equal_height=True):
|
224 |
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
-
button = gr.Button("Generate using Bark")
|
228 |
-
|
229 |
-
out1 = gr.Audio(label="Generated Audio")
|
230 |
-
|
231 |
-
button.click(generate_text_to_speech, [inp1, inp2, inp3, inp4], [out1])
|
232 |
-
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
238 |
|
239 |
-
btn = gr.Button("Generate using YourTTS")
|
240 |
-
out2 = gr.Audio(label="Generated Audio in a Custom Voice")
|
241 |
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
-
gr.Examples(examples=examples1, fn=voice_conversion, inputs=[inp5, inp6, inp7],
|
245 |
-
outputs=[out2], cache_examples=True)
|
246 |
-
|
247 |
-
gr.Markdown(
|
248 |
-
""" ### <center>NOTE: Please do not generate any audio that is potentially harmful to any person or organization❗</center>
|
249 |
-
|
250 |
-
"""
|
251 |
-
)
|
252 |
-
gr.Markdown(
|
253 |
-
"""
|
254 |
-
### <center>😄 - You may also apply [VoiceFixer](https://huggingface.co/spaces/Kevin676/VoiceFixer) to the generated audio in order to enhance the speech.</center>
|
255 |
-
## 🌎 Foreign Language
|
256 |
-
Bark supports various languages out-of-the-box and automatically determines language from input text. \
|
257 |
-
When prompted with code-switched text, Bark will even attempt to employ the native accent for the respective languages in the same voice.
|
258 |
-
Try the prompt:
|
259 |
-
```
|
260 |
-
Buenos días Miguel. Tu colega piensa que tu alemán es extremadamente malo. But I suppose your english isn't terrible.
|
261 |
-
```
|
262 |
-
## 🤭 Non-Speech Sounds
|
263 |
-
Below is a list of some known non-speech sounds, but we are finding more every day. \
|
264 |
-
Please let us know if you find patterns that work particularly well on Discord!
|
265 |
-
* [laughter]
|
266 |
-
* [laughs]
|
267 |
-
* [sighs]
|
268 |
-
* [music]
|
269 |
-
* [gasps]
|
270 |
-
* [clears throat]
|
271 |
-
* — or ... for hesitations
|
272 |
-
* ♪ for song lyrics
|
273 |
-
* capitalization for emphasis of a word
|
274 |
-
* MAN/WOMAN: for bias towards speaker
|
275 |
-
Try the prompt:
|
276 |
-
```
|
277 |
-
" [clears throat] Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as... ♪ singing ♪."
|
278 |
-
```
|
279 |
-
## 🎶 Music
|
280 |
-
Bark can generate all types of audio, and, in principle, doesn't see a difference between speech and music. \
|
281 |
-
Sometimes Bark chooses to generate text as music, but you can help it out by adding music notes around your lyrics.
|
282 |
-
Try the prompt:
|
283 |
-
```
|
284 |
-
♪ In the jungle, the mighty jungle, the lion barks tonight ♪
|
285 |
-
```
|
286 |
-
## 🧬 Voice Cloning
|
287 |
-
Bark has the capability to fully clone voices - including tone, pitch, emotion and prosody. \
|
288 |
-
The model also attempts to preserve music, ambient noise, etc. from input audio. \
|
289 |
-
However, to mitigate misuse of this technology, we limit the audio history prompts to a limited set of Suno-provided, fully synthetic options to choose from.
|
290 |
-
## 👥 Speaker Prompts
|
291 |
-
You can provide certain speaker prompts such as NARRATOR, MAN, WOMAN, etc. \
|
292 |
-
Please note that these are not always respected, especially if a conflicting audio history prompt is given.
|
293 |
-
Try the prompt:
|
294 |
-
```
|
295 |
-
WOMAN: I would like an oatmilk latte please.
|
296 |
-
MAN: Wow, that's expensive!
|
297 |
-
```
|
298 |
-
## Details
|
299 |
-
Bark model by [Suno](https://suno.ai/), including official [code](https://github.com/suno-ai/bark) and model weights. \
|
300 |
-
Gradio demo supported by 🤗 Hugging Face. Bark is licensed under a non-commercial license: CC-BY 4.0 NC, see details on [GitHub](https://github.com/suno-ai/bark).
|
301 |
-
|
302 |
-
"""
|
303 |
-
)
|
304 |
-
|
305 |
-
|
306 |
-
gr.HTML('''
|
307 |
-
<div class="footer">
|
308 |
-
<p>🎶🖼️🎡 - It’s the intersection of technology and liberal arts that makes our hearts sing — Steve Jobs
|
309 |
-
</p>
|
310 |
-
</div>
|
311 |
-
''')
|
312 |
-
|
313 |
-
demo.queue().launch(show_error=True)
|
|
|
1 |
+
from cProfile import label
|
2 |
+
import dataclasses
|
3 |
+
from distutils.command.check import check
|
4 |
+
from doctest import Example
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import gradio as gr
|
6 |
+
import os
|
7 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import numpy as np
|
9 |
+
import logging
|
|
|
|
|
10 |
import torch
|
11 |
+
import pytorch_seed
|
12 |
+
import time
|
13 |
|
14 |
+
from xml.sax import saxutils
|
15 |
+
from bark.api import generate_with_settings
|
16 |
+
from bark.api import save_as_prompt
|
17 |
+
from util.settings import Settings
|
18 |
+
#import nltk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
from bark import SAMPLE_RATE
|
21 |
+
from cloning.clonevoice import clone_voice
|
22 |
+
from bark.generation import SAMPLE_RATE, preload_models, _load_history_prompt, codec_decode
|
23 |
+
from scipy.io.wavfile import write as write_wav
|
24 |
+
from util.parseinput import split_and_recombine_text, build_ssml, is_ssml, create_clips_from_ssml
|
25 |
+
from datetime import datetime
|
26 |
+
from tqdm.auto import tqdm
|
27 |
+
from util.helper import create_filename, add_id3_tag
|
28 |
+
from swap_voice import swap_voice_from_audio
|
29 |
+
from training.training_prepare import prepare_semantics_from_text, prepare_wavs_from_semantics
|
30 |
+
from training.train import training_prepare_files, train
|
31 |
+
|
32 |
+
settings = Settings('config.yaml')
|
33 |
+
|
34 |
+
|
35 |
+
def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, eos_prob, quick_generation, complete_settings, seed, batchcount, progress=gr.Progress(track_tqdm=True)):
|
36 |
+
# Chunk the text into smaller pieces then combine the generated audio
|
37 |
+
|
38 |
+
# generation settings
|
39 |
+
if selected_speaker == 'None':
|
40 |
+
selected_speaker = None
|
41 |
+
|
42 |
+
voice_name = selected_speaker
|
43 |
+
|
44 |
+
if text == None or len(text) < 1:
|
45 |
+
if selected_speaker == None:
|
46 |
+
raise gr.Error('No text entered!')
|
47 |
+
|
48 |
+
# Extract audio data from speaker if no text and speaker selected
|
49 |
+
voicedata = _load_history_prompt(voice_name)
|
50 |
+
audio_arr = codec_decode(voicedata["fine_prompt"])
|
51 |
+
result = create_filename(settings.output_folder_path, "None", "extract",".wav")
|
52 |
+
save_wav(audio_arr, result)
|
53 |
+
return result
|
54 |
+
|
55 |
+
if batchcount < 1:
|
56 |
+
batchcount = 1
|
57 |
+
|
58 |
+
|
59 |
+
silenceshort = np.zeros(int((float(settings.silence_sentence) / 1000.0) * SAMPLE_RATE), dtype=np.int16) # quarter second of silence
|
60 |
+
silencelong = np.zeros(int((float(settings.silence_speakers) / 1000.0) * SAMPLE_RATE), dtype=np.float32) # half a second of silence
|
61 |
+
use_last_generation_as_history = "Use last generation as history" in complete_settings
|
62 |
+
save_last_generation = "Save generation as Voice" in complete_settings
|
63 |
+
for l in range(batchcount):
|
64 |
+
currentseed = seed
|
65 |
+
if seed != None and seed > 2**32 - 1:
|
66 |
+
logger.warning(f"Seed {seed} > 2**32 - 1 (max), setting to random")
|
67 |
+
currentseed = None
|
68 |
+
if currentseed == None or currentseed <= 0:
|
69 |
+
currentseed = np.random.default_rng().integers(1, 2**32 - 1)
|
70 |
+
assert(0 < currentseed and currentseed < 2**32)
|
71 |
+
|
72 |
+
progress(0, desc="Generating")
|
73 |
+
|
74 |
+
full_generation = None
|
75 |
+
|
76 |
+
all_parts = []
|
77 |
+
complete_text = ""
|
78 |
+
text = text.lstrip()
|
79 |
+
if is_ssml(text):
|
80 |
+
list_speak = create_clips_from_ssml(text)
|
81 |
+
prev_speaker = None
|
82 |
+
for i, clip in tqdm(enumerate(list_speak), total=len(list_speak)):
|
83 |
+
selected_speaker = clip[0]
|
84 |
+
# Add pause break between speakers
|
85 |
+
if i > 0 and selected_speaker != prev_speaker:
|
86 |
+
all_parts += [silencelong.copy()]
|
87 |
+
prev_speaker = selected_speaker
|
88 |
+
text = clip[1]
|
89 |
+
text = saxutils.unescape(text)
|
90 |
+
if selected_speaker == "None":
|
91 |
+
selected_speaker = None
|
92 |
+
|
93 |
+
print(f"\nGenerating Text ({i+1}/{len(list_speak)}) -> {selected_speaker} (Seed {currentseed}):`{text}`")
|
94 |
+
complete_text += text
|
95 |
+
with pytorch_seed.SavedRNG(currentseed):
|
96 |
+
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
|
97 |
+
currentseed = torch.random.initial_seed()
|
98 |
+
if len(list_speak) > 1:
|
99 |
+
filename = create_filename(settings.output_folder_path, currentseed, "audioclip",".wav")
|
100 |
+
save_wav(audio_array, filename)
|
101 |
+
add_id3_tag(filename, text, selected_speaker, currentseed)
|
102 |
+
|
103 |
+
all_parts += [audio_array]
|
104 |
+
else:
|
105 |
+
texts = split_and_recombine_text(text, settings.input_text_desired_length, settings.input_text_max_length)
|
106 |
+
for i, text in tqdm(enumerate(texts), total=len(texts)):
|
107 |
+
print(f"\nGenerating Text ({i+1}/{len(texts)}) -> {selected_speaker} (Seed {currentseed}):`{text}`")
|
108 |
+
complete_text += text
|
109 |
+
if quick_generation == True:
|
110 |
+
with pytorch_seed.SavedRNG(currentseed):
|
111 |
+
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
|
112 |
+
currentseed = torch.random.initial_seed()
|
113 |
+
else:
|
114 |
+
full_output = use_last_generation_as_history or save_last_generation
|
115 |
+
if full_output:
|
116 |
+
full_generation, audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob, output_full=True)
|
117 |
+
else:
|
118 |
+
audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
|
119 |
+
|
120 |
+
# Noticed this in the HF Demo - convert to 16bit int -32767/32767 - most used audio format
|
121 |
+
# audio_array = (audio_array * 32767).astype(np.int16)
|
122 |
+
|
123 |
+
if len(texts) > 1:
|
124 |
+
filename = create_filename(settings.output_folder_path, currentseed, "audioclip",".wav")
|
125 |
+
save_wav(audio_array, filename)
|
126 |
+
add_id3_tag(filename, text, selected_speaker, currentseed)
|
127 |
+
|
128 |
+
if quick_generation == False and (save_last_generation == True or use_last_generation_as_history == True):
|
129 |
+
# save to npz
|
130 |
+
voice_name = create_filename(settings.output_folder_path, seed, "audioclip", ".npz")
|
131 |
+
save_as_prompt(voice_name, full_generation)
|
132 |
+
if use_last_generation_as_history:
|
133 |
+
selected_speaker = voice_name
|
134 |
+
|
135 |
+
all_parts += [audio_array]
|
136 |
+
# Add short pause between sentences
|
137 |
+
if text[-1] in "!?.\n" and i > 1:
|
138 |
+
all_parts += [silenceshort.copy()]
|
139 |
+
|
140 |
+
# save & play audio
|
141 |
+
result = create_filename(settings.output_folder_path, currentseed, "final",".wav")
|
142 |
+
save_wav(np.concatenate(all_parts), result)
|
143 |
+
# write id3 tag with text truncated to 60 chars, as a precaution...
|
144 |
+
add_id3_tag(result, complete_text, selected_speaker, currentseed)
|
145 |
+
|
146 |
+
return result
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
def save_wav(audio_array, filename):
|
151 |
+
write_wav(filename, SAMPLE_RATE, audio_array)
|
152 |
+
|
153 |
+
def save_voice(filename, semantic_prompt, coarse_prompt, fine_prompt):
|
154 |
+
np.savez_compressed(
|
155 |
+
filename,
|
156 |
+
semantic_prompt=semantic_prompt,
|
157 |
+
coarse_prompt=coarse_prompt,
|
158 |
+
fine_prompt=fine_prompt
|
159 |
)
|
160 |
|
|
|
|
|
161 |
|
162 |
+
def on_quick_gen_changed(checkbox):
|
163 |
+
if checkbox == False:
|
164 |
+
return gr.CheckboxGroup.update(visible=True)
|
165 |
+
return gr.CheckboxGroup.update(visible=False)
|
166 |
+
|
167 |
+
def delete_output_files(checkbox_state):
|
168 |
+
if checkbox_state:
|
169 |
+
outputs_folder = os.path.join(os.getcwd(), settings.output_folder_path)
|
170 |
+
if os.path.exists(outputs_folder):
|
171 |
+
purgedir(outputs_folder)
|
172 |
+
return False
|
173 |
+
|
174 |
+
|
175 |
+
# https://stackoverflow.com/a/54494779
|
176 |
+
def purgedir(parent):
|
177 |
+
for root, dirs, files in os.walk(parent):
|
178 |
+
for item in files:
|
179 |
+
# Delete subordinate files
|
180 |
+
filespec = os.path.join(root, item)
|
181 |
+
os.unlink(filespec)
|
182 |
+
for item in dirs:
|
183 |
+
# Recursively perform this operation for subordinate directories
|
184 |
+
purgedir(os.path.join(root, item))
|
185 |
+
|
186 |
+
def convert_text_to_ssml(text, selected_speaker):
|
187 |
+
return build_ssml(text, selected_speaker)
|
188 |
+
|
189 |
+
|
190 |
+
def training_prepare(selected_step, num_text_generations, progress=gr.Progress(track_tqdm=True)):
|
191 |
+
if selected_step == prepare_training_list[0]:
|
192 |
+
prepare_semantics_from_text()
|
193 |
+
else:
|
194 |
+
prepare_wavs_from_semantics()
|
195 |
+
return None
|
196 |
+
|
197 |
+
|
198 |
+
def start_training(save_model_epoch, max_epochs, progress=gr.Progress(track_tqdm=True)):
|
199 |
+
training_prepare_files("./training/data/", "./training/data/checkpoint/hubert_base_ls960.pt")
|
200 |
+
train("./training/data/", save_model_epoch, max_epochs)
|
201 |
+
return None
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
def apply_settings(themes, input_server_name, input_server_port, input_server_public, input_desired_len, input_max_len, input_silence_break, input_silence_speaker):
|
206 |
+
settings.selected_theme = themes
|
207 |
+
settings.server_name = input_server_name
|
208 |
+
settings.server_port = input_server_port
|
209 |
+
settings.server_share = input_server_public
|
210 |
+
settings.input_text_desired_length = input_desired_len
|
211 |
+
settings.input_text_max_length = input_max_len
|
212 |
+
settings.silence_sentence = input_silence_break
|
213 |
+
settings.silence_speaker = input_silence_speaker
|
214 |
+
settings.save()
|
215 |
+
|
216 |
+
def restart():
|
217 |
+
global restart_server
|
218 |
+
restart_server = True
|
219 |
+
|
220 |
+
|
221 |
+
def create_version_html():
|
222 |
+
python_version = ".".join([str(x) for x in sys.version_info[0:3]])
|
223 |
+
versions_html = f"""
|
224 |
+
python: <span title="{sys.version}">{python_version}</span>
|
225 |
+
•
|
226 |
+
torch: {getattr(torch, '__long_version__',torch.__version__)}
|
227 |
+
•
|
228 |
+
gradio: {gr.__version__}
|
229 |
+
"""
|
230 |
+
return versions_html
|
231 |
|
232 |
+
|
|
|
|
|
|
|
233 |
|
234 |
+
logger = logging.getLogger(__name__)
|
235 |
+
APPTITLE = "Bark Voice Cloning UI"
|
236 |
+
|
237 |
+
|
238 |
+
autolaunch = False
|
239 |
+
|
240 |
+
if len(sys.argv) > 1:
|
241 |
+
autolaunch = "-autolaunch" in sys.argv
|
242 |
+
|
243 |
+
|
244 |
+
if torch.cuda.is_available() == False:
|
245 |
+
os.environ['BARK_FORCE_CPU'] = 'True'
|
246 |
+
logger.warning("No CUDA detected, fallback to CPU!")
|
247 |
+
|
248 |
+
print(f'smallmodels={os.environ.get("SUNO_USE_SMALL_MODELS", False)}')
|
249 |
+
print(f'enablemps={os.environ.get("SUNO_ENABLE_MPS", False)}')
|
250 |
+
print(f'offloadcpu={os.environ.get("SUNO_OFFLOAD_CPU", False)}')
|
251 |
+
print(f'forcecpu={os.environ.get("BARK_FORCE_CPU", False)}')
|
252 |
+
print(f'autolaunch={autolaunch}\n\n')
|
253 |
+
|
254 |
+
#print("Updating nltk\n")
|
255 |
+
#nltk.download('punkt')
|
256 |
+
|
257 |
+
print("Preloading Models\n")
|
258 |
+
preload_models()
|
259 |
+
|
260 |
+
available_themes = ["Default", "gradio/glass", "gradio/monochrome", "gradio/seafoam", "gradio/soft", "gstaff/xkcd", "freddyaboulton/dracula_revamped", "ysharma/steampunk"]
|
261 |
+
tokenizer_language_list = ["de","en", "pl"]
|
262 |
+
prepare_training_list = ["Step 1: Semantics from Text","Step 2: WAV from Semantics"]
|
263 |
+
|
264 |
+
seed = -1
|
265 |
+
server_name = settings.server_name
|
266 |
+
if len(server_name) < 1:
|
267 |
+
server_name = None
|
268 |
+
server_port = settings.server_port
|
269 |
+
if server_port <= 0:
|
270 |
+
server_port = None
|
271 |
+
global run_server
|
272 |
+
global restart_server
|
273 |
+
|
274 |
+
run_server = True
|
275 |
+
|
276 |
+
while run_server:
|
277 |
+
# Collect all existing speakers/voices in dir
|
278 |
+
speakers_list = []
|
279 |
+
|
280 |
+
for root, dirs, files in os.walk("./bark/assets/prompts"):
|
281 |
+
for file in files:
|
282 |
+
if file.endswith(".npz"):
|
283 |
+
pathpart = root.replace("./bark/assets/prompts", "")
|
284 |
+
name = os.path.join(pathpart, file[:-4])
|
285 |
+
if name.startswith("/") or name.startswith("\\"):
|
286 |
+
name = name[1:]
|
287 |
+
speakers_list.append(name)
|
288 |
+
|
289 |
+
speakers_list = sorted(speakers_list, key=lambda x: x.lower())
|
290 |
+
speakers_list.insert(0, 'None')
|
291 |
+
|
292 |
+
print(f'Launching {APPTITLE} Server')
|
293 |
+
|
294 |
+
# Create Gradio Blocks
|
295 |
+
|
296 |
+
with gr.Blocks(title=f"{APPTITLE}", mode=f"{APPTITLE}", theme=settings.selected_theme) as barkgui:
|
297 |
+
gr.Markdown("# <center>🐶🎶⭐ - Bark Voice Cloning</center>")
|
298 |
+
gr.Markdown("### <center>🤗 - If you like this space, please star my [github repo](https://github.com/KevinWang676/Bark-Voice-Cloning)</center>")
|
299 |
+
gr.Markdown("### <center>🎡 - Based on [bark-gui](https://github.com/C0untFloyd/bark-gui)</center>")
|
300 |
+
gr.Markdown(f""" You can duplicate and use it with a GPU: <a href="https://huggingface.co/spaces/{os.getenv('SPACE_ID')}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a>
|
301 |
+
or open in [Colab](https://colab.research.google.com/github/KevinWang676/Bark-Voice-Cloning/blob/main/Bark_Voice_Cloning_UI.ipynb) for quick start 🌟
|
302 |
+
""")
|
303 |
+
|
304 |
+
with gr.Tab("🎙️ - Clone Voice"):
|
305 |
+
with gr.Row():
|
306 |
+
input_audio_filename = gr.Audio(label="Input audio.wav", source="upload", type="filepath")
|
307 |
+
#transcription_text = gr.Textbox(label="Transcription Text", lines=1, placeholder="Enter Text of your Audio Sample here...")
|
308 |
+
with gr.Row():
|
309 |
+
with gr.Column():
|
310 |
+
initialname = "/home/user/app/bark/assets/prompts/file"
|
311 |
+
output_voice = gr.Textbox(label="Filename of trained Voice (do not change the initial name)", lines=1, placeholder=initialname, value=initialname, visible=False)
|
312 |
+
with gr.Column():
|
313 |
+
tokenizerlang = gr.Dropdown(tokenizer_language_list, label="Base Language Tokenizer", value=tokenizer_language_list[1], visible=False)
|
314 |
+
with gr.Row():
|
315 |
+
clone_voice_button = gr.Button("Create Voice", variant="primary")
|
316 |
+
with gr.Row():
|
317 |
+
dummy = gr.Text(label="Progress")
|
318 |
+
npz_file = gr.File(label=".npz file")
|
319 |
+
speakers_list.insert(0, npz_file) # add prompt
|
320 |
+
|
321 |
+
with gr.Tab("🎵 - TTS"):
|
322 |
+
with gr.Row():
|
323 |
+
with gr.Column():
|
324 |
+
placeholder = "Enter text here."
|
325 |
+
input_text = gr.Textbox(label="Input Text", lines=4, placeholder=placeholder)
|
326 |
+
convert_to_ssml_button = gr.Button("Convert Input Text to SSML")
|
327 |
+
with gr.Column():
|
328 |
+
seedcomponent = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1)
|
329 |
+
batchcount = gr.Number(label="Batch count", precision=0, value=1)
|
330 |
+
|
331 |
+
with gr.Row():
|
332 |
+
with gr.Column():
|
333 |
+
gr.Markdown("[Voice Prompt Library](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c)")
|
334 |
+
speaker = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice (Choose “file” if you wanna use the custom voice)")
|
335 |
+
|
336 |
+
with gr.Column():
|
337 |
+
text_temp = gr.Slider(0.1, 1.0, value=0.6, label="Generation Temperature", info="1.0 more diverse, 0.1 more conservative")
|
338 |
+
waveform_temp = gr.Slider(0.1, 1.0, value=0.7, label="Waveform temperature", info="1.0 more diverse, 0.1 more conservative")
|
339 |
+
|
340 |
+
with gr.Row():
|
341 |
+
with gr.Column():
|
342 |
+
quick_gen_checkbox = gr.Checkbox(label="Quick Generation", value=True)
|
343 |
+
settings_checkboxes = ["Use last generation as history", "Save generation as Voice"]
|
344 |
+
complete_settings = gr.CheckboxGroup(choices=settings_checkboxes, value=settings_checkboxes, label="Detailed Generation Settings", type="value", interactive=True, visible=False)
|
345 |
+
with gr.Column():
|
346 |
+
eos_prob = gr.Slider(0.0, 0.5, value=0.05, label="End of sentence probability")
|
347 |
+
|
348 |
+
with gr.Row():
|
349 |
+
with gr.Column():
|
350 |
+
tts_create_button = gr.Button("Generate", variant="primary")
|
351 |
+
with gr.Column():
|
352 |
+
hidden_checkbox = gr.Checkbox(visible=False)
|
353 |
+
button_stop_generation = gr.Button("Stop generation")
|
354 |
+
with gr.Row():
|
355 |
+
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
356 |
+
|
357 |
+
with gr.Tab("🔮 - Voice Conversion"):
|
358 |
+
with gr.Row():
|
359 |
+
swap_audio_filename = gr.Audio(label="Input audio.wav to swap voice", source="upload", type="filepath")
|
360 |
+
with gr.Row():
|
361 |
+
with gr.Column():
|
362 |
+
swap_tokenizer_lang = gr.Dropdown(tokenizer_language_list, label="Base Language Tokenizer", value=tokenizer_language_list[1])
|
363 |
+
swap_seed = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1)
|
364 |
+
with gr.Column():
|
365 |
+
speaker_swap = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice (Choose “file” if you wanna use the custom voice)")
|
366 |
+
swap_batchcount = gr.Number(label="Batch count", precision=0, value=1)
|
367 |
+
with gr.Row():
|
368 |
+
swap_voice_button = gr.Button("Generate", variant="primary")
|
369 |
+
with gr.Row():
|
370 |
+
output_swap = gr.Audio(label="Generated Audio", type="filepath")
|
371 |
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
+
quick_gen_checkbox.change(fn=on_quick_gen_changed, inputs=quick_gen_checkbox, outputs=complete_settings)
|
374 |
+
convert_to_ssml_button.click(convert_text_to_ssml, inputs=[input_text, speaker],outputs=input_text)
|
375 |
+
gen_click = tts_create_button.click(generate_text_to_speech, inputs=[input_text, speaker, text_temp, waveform_temp, eos_prob, quick_gen_checkbox, complete_settings, seedcomponent, batchcount],outputs=output_audio)
|
376 |
+
button_stop_generation.click(fn=None, inputs=None, outputs=None, cancels=[gen_click])
|
377 |
+
|
378 |
|
|
|
|
|
379 |
|
380 |
+
swap_voice_button.click(swap_voice_from_audio, inputs=[swap_audio_filename, speaker_swap, swap_tokenizer_lang, swap_seed, swap_batchcount], outputs=output_swap)
|
381 |
+
clone_voice_button.click(clone_voice, inputs=[input_audio_filename, output_voice], outputs=[dummy, npz_file])
|
382 |
+
|
383 |
+
|
384 |
+
restart_server = False
|
385 |
+
try:
|
386 |
+
barkgui.queue().launch(show_error=True)
|
387 |
+
except:
|
388 |
+
restart_server = True
|
389 |
+
run_server = False
|
390 |
+
try:
|
391 |
+
while restart_server == False:
|
392 |
+
time.sleep(1.0)
|
393 |
+
except (KeyboardInterrupt, OSError):
|
394 |
+
print("Keyboard interruption in main thread... closing server.")
|
395 |
+
run_server = False
|
396 |
+
barkgui.close()
|
397 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|