File size: 7,704 Bytes
37b43d6
 
 
 
 
 
 
 
 
 
 
 
 
f6f903c
 
 
 
 
 
 
 
 
 
37b43d6
 
 
 
 
 
f6f903c
 
 
 
37b43d6
 
 
 
f6f903c
 
 
 
37b43d6
 
f6f903c
37b43d6
 
 
f6f903c
37b43d6
 
 
 
f6f903c
 
 
 
 
 
 
 
37b43d6
 
 
 
 
 
f6f903c
 
 
 
 
37b43d6
f6f903c
 
 
 
37b43d6
 
 
 
 
f6f903c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37b43d6
f6f903c
 
37b43d6
f6f903c
 
37b43d6
f6f903c
 
37b43d6
 
 
 
 
 
 
 
 
 
f6f903c
37b43d6
 
 
 
 
 
 
 
 
f6f903c
 
37b43d6
 
 
 
f6f903c
37b43d6
 
 
 
 
 
 
 
 
 
 
 
5f0d977
 
37b43d6
5f0d977
 
37b43d6
f6f903c
5f0d977
37b43d6
 
 
 
 
 
 
f6f903c
 
37b43d6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
from PIL import Image
import json
import random

import cv2
import einops
import gradio as gr
import numpy as np
import torch

from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSampler

import torch.nn as nn
from torch.nn.functional import threshold, normalize,interpolate
from torch.utils.data import Dataset
from torch.optim import Adam
from torch.utils.data import Dataset
from torchvision import transforms
from torch.utils.data import DataLoader
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation

import argparse

device = "cuda" if torch.cuda.is_available() else "cpu"

parseargs = argparse.ArgumentParser()
parseargs.add_argument('--model', type=str, default='control_sd15_colorize_epoch=156.ckpt')
args = parseargs.parse_args()
model_path = args.model

feature_extractor = SegformerFeatureExtractor.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing")
segmodel = SegformerForSemanticSegmentation.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing")

model = create_model('./models/control_sd15_colorize.yaml').cpu()
model.load_state_dict(load_state_dict(f"./models/{model_path}", location=device))
model = model.to(device)
ddim_sampler = DDIMSampler(model)

def LGB_TO_RGB(gray_image, rgb_image):
    # gray_image [H, W, 1]
    # rgb_image [H, W, 3]

    lab_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2LAB)
    lab_image[:, :, 0] = gray_image[:, :, 0]

    return cv2.cvtColor(lab_image, cv2.COLOR_LAB2RGB)


def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, threshold, save_memory=False):
    # center crop image to square
    # H, W, _ = input_image.shape
    # if H > W:
    #     input_image = input_image[(H - W) // 2:(H + W) // 2, :, :]
    # elif W > H:
    #     input_image = input_image[:, (W - H) // 2:(H + W) // 2, :]

    with torch.no_grad():
        img = resize_image(input_image, image_resolution)
        H, W, C = img.shape
        print("img shape: ", img.shape)
        if C == 3:
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            detected_map = img[:, :, None]
            print("Gray image shape: ", detected_map.shape)
        control = torch.from_numpy(detected_map.copy()).float().to(device)
        # control = einops.rearrange(control, 'h w c -> 1 c h w')
        print("Control shape: ", control.shape)

        control = control / 255.0
        control = torch.stack([control for _ in range(num_samples)], dim=0)
        print("Stacked control shape: ", control.shape)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()

        if seed == -1:
            seed = random.randint(0, 65535)
        seed_everything(seed)

        if save_memory:
            model.low_vram_shift(is_diffusing=False)

        cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
        un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
        shape = (4, H // 8, W // 8)

        if save_memory:
            model.low_vram_shift(is_diffusing=True)

        model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)  # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
        samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
                                                     shape, cond, verbose=False, eta=eta,
                                                     unconditional_guidance_scale=scale,
                                                     unconditional_conditioning=un_cond)

        if save_memory:
            model.low_vram_shift(is_diffusing=False)

        x_samples = model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

        results = [x_samples[i] for i in range(num_samples)]
        results = [LGB_TO_RGB(detected_map, result) for result in results]

        # results의 각 이미지를 mask로 변환
        masks = []
        for result in results:
            inputs = feature_extractor(images=result, return_tensors="pt")
            outputs = segmodel(**inputs)
            logits = outputs.logits
            logits = logits.squeeze(0)
            thresholded = torch.zeros_like(logits)
            thresholded[logits > threshold] = 1
            mask = thresholded[1: ,:, :].sum(dim=0)
            mask = mask.unsqueeze(0).unsqueeze(0)
            mask = interpolate(mask, size=(H, W), mode='bilinear')
            mask = mask.detach().numpy()
            mask = np.squeeze(mask)
            mask = np.where(mask > threshold, 1, 0)
            masks.append(mask)

        # results의 각 이미지를 mask를 이용해 mask가 0인 부분은 img 즉 흑백 이미지로 변환.
        # img를 channel이 3인 rgb 이미지로 변환
        gray_img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)    # [H, W, 3]
        final = [gray_img * (1 - mask[:, :, None]) + result * mask[:, :, None] for result, mask in zip(results, masks)]

    # mask to 255 img

    mask_img = [mask * 255 for mask in masks]
    return [detected_map.squeeze(-1)] + results + mask_img + final


block = gr.Blocks().queue()
with block:
    with gr.Row():
        gr.Markdown("## Control Stable Diffusion with Gray Image")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(sources=['upload'], type="numpy")
            prompt = gr.Textbox(label="Prompt")
            run_button = gr.Button(value="Run")
            with gr.Accordion("Advanced options", open=False):
                num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1, visible=False)
                image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=512, value=512, step=64)
                strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
                guess_mode = gr.Checkbox(label='Guess Mode', value=False, visible=False)
                ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=20, value=20, step=1)
                scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=1.0, step=0.1)
                threshold = gr.Slider(label="segmentation threshold", minimum=0.1, maximum=0.9, value=0.5, step=0.05)
                seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
                eta = gr.Number(label="eta (DDIM)", value=0.0)
                a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
                n_prompt = gr.Textbox(label="Negative Prompt",
                                      value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
        with gr.Column():
            # result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery")
    ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, threshold]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery], concurrency_limit=2)

block.queue(max_size=100)
block.launch(share=True)