Spaces:
Paused
Paused
File size: 7,704 Bytes
37b43d6 f6f903c 37b43d6 f6f903c 37b43d6 f6f903c 37b43d6 f6f903c 37b43d6 f6f903c 37b43d6 f6f903c 37b43d6 f6f903c 37b43d6 f6f903c 37b43d6 f6f903c 37b43d6 f6f903c 37b43d6 f6f903c 37b43d6 f6f903c 37b43d6 f6f903c 37b43d6 f6f903c 37b43d6 f6f903c 37b43d6 5f0d977 37b43d6 5f0d977 37b43d6 f6f903c 5f0d977 37b43d6 f6f903c 37b43d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
from PIL import Image
import json
import random
import cv2
import einops
import gradio as gr
import numpy as np
import torch
from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSampler
import torch.nn as nn
from torch.nn.functional import threshold, normalize,interpolate
from torch.utils.data import Dataset
from torch.optim import Adam
from torch.utils.data import Dataset
from torchvision import transforms
from torch.utils.data import DataLoader
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
import argparse
device = "cuda" if torch.cuda.is_available() else "cpu"
parseargs = argparse.ArgumentParser()
parseargs.add_argument('--model', type=str, default='control_sd15_colorize_epoch=156.ckpt')
args = parseargs.parse_args()
model_path = args.model
feature_extractor = SegformerFeatureExtractor.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing")
segmodel = SegformerForSemanticSegmentation.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing")
model = create_model('./models/control_sd15_colorize.yaml').cpu()
model.load_state_dict(load_state_dict(f"./models/{model_path}", location=device))
model = model.to(device)
ddim_sampler = DDIMSampler(model)
def LGB_TO_RGB(gray_image, rgb_image):
# gray_image [H, W, 1]
# rgb_image [H, W, 3]
lab_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2LAB)
lab_image[:, :, 0] = gray_image[:, :, 0]
return cv2.cvtColor(lab_image, cv2.COLOR_LAB2RGB)
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, threshold, save_memory=False):
# center crop image to square
# H, W, _ = input_image.shape
# if H > W:
# input_image = input_image[(H - W) // 2:(H + W) // 2, :, :]
# elif W > H:
# input_image = input_image[:, (W - H) // 2:(H + W) // 2, :]
with torch.no_grad():
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
print("img shape: ", img.shape)
if C == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
detected_map = img[:, :, None]
print("Gray image shape: ", detected_map.shape)
control = torch.from_numpy(detected_map.copy()).float().to(device)
# control = einops.rearrange(control, 'h w c -> 1 c h w')
print("Control shape: ", control.shape)
control = control / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
print("Stacked control shape: ", control.shape)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if save_memory:
model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
results = [LGB_TO_RGB(detected_map, result) for result in results]
# results의 각 이미지를 mask로 변환
masks = []
for result in results:
inputs = feature_extractor(images=result, return_tensors="pt")
outputs = segmodel(**inputs)
logits = outputs.logits
logits = logits.squeeze(0)
thresholded = torch.zeros_like(logits)
thresholded[logits > threshold] = 1
mask = thresholded[1: ,:, :].sum(dim=0)
mask = mask.unsqueeze(0).unsqueeze(0)
mask = interpolate(mask, size=(H, W), mode='bilinear')
mask = mask.detach().numpy()
mask = np.squeeze(mask)
mask = np.where(mask > threshold, 1, 0)
masks.append(mask)
# results의 각 이미지를 mask를 이용해 mask가 0인 부분은 img 즉 흑백 이미지로 변환.
# img를 channel이 3인 rgb 이미지로 변환
gray_img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # [H, W, 3]
final = [gray_img * (1 - mask[:, :, None]) + result * mask[:, :, None] for result, mask in zip(results, masks)]
# mask to 255 img
mask_img = [mask * 255 for mask in masks]
return [detected_map.squeeze(-1)] + results + mask_img + final
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("## Control Stable Diffusion with Gray Image")
with gr.Row():
with gr.Column():
input_image = gr.Image(sources=['upload'], type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(value="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1, visible=False)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=512, value=512, step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
guess_mode = gr.Checkbox(label='Guess Mode', value=False, visible=False)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=20, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=1.0, step=0.1)
threshold = gr.Slider(label="segmentation threshold", minimum=0.1, maximum=0.9, value=0.5, step=0.05)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery")
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, threshold]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery], concurrency_limit=2)
block.queue(max_size=100)
block.launch(share=True)
|