File size: 8,039 Bytes
37b43d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
from PIL import Image
import json
import random

import cv2
import einops
import gradio as gr
import numpy as np
import torch

from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from torch.nn.functional import threshold, normalize, interpolate
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from einops import rearrange, repeat

import argparse

device = "cuda" if torch.cuda.is_available() else "cpu"

parseargs = argparse.ArgumentParser()
parseargs.add_argument('--pretrained_model', type=str, default='runwayml/stable-diffusion-v1-5')
parseargs.add_argument('--controlnet', type=str, default='controlnet')
parseargs.add_argument('--precision', type=str, default='fp32')
args = parseargs.parse_args()
pretrained_model = args.pretrained_model

# Check for different hardware architectures
if torch.cuda.is_available():
    device = "cuda"
    # Check for xformers
    try:
        import xformers

        enable_xformers = True
    except ImportError:
        enable_xformers = False
elif torch.backends.mps.is_available():
    device = "mps"
else:
    device = "cpu"

print(f"Using device: {device}")

# Load models
if args.precision == 'fp32':
    torch_dtype = torch.float32
elif args.precision == 'fp16':
    torch_dtype = torch.float16
elif args.precision == 'bf16':
    torch_dtype = torch.bfloat16
else:
    raise ValueError(f"Invalid precision: {args.precision}")

controlnet = ControlNetModel.from_pretrained(args.controlnet, torch_dtype=torch_dtype)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
    args.pretrained_model, controlnet=controlnet, torch_dtype=torch_dtype
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to(device)

# Apply optimizations based on hardware
if device == "cuda":
    pipe = pipe.to(device)
    if enable_xformers:
        pipe.enable_xformers_memory_efficient_attention()
        print("xformers optimization enabled")
elif device == "mps":
    pipe = pipe.to(device)
    pipe.enable_attention_slicing()
    print("Attention slicing enabled for Apple Silicon")
else:
    # CPU-specific optimizations
    pipe = pipe.to(device)
    # pipe.enable_sequential_cpu_offload()
    # pipe.enable_attention_slicing()

feature_extractor = SegformerFeatureExtractor.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing")
segmodel = SegformerForSemanticSegmentation.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing")


def LGB_TO_RGB(gray_image, rgb_image):
    # gray_image [H, W, 3]
    # rgb_image [H, W, 3]

    print("gray_image shape: ", gray_image.shape)
    print("rgb_image shape: ", rgb_image.shape)

    gray_image = cv2.cvtColor(gray_image, cv2.COLOR_RGB2GRAY)
    lab_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2LAB)
    lab_image[:, :, 0] = gray_image[:, :]

    return cv2.cvtColor(lab_image, cv2.COLOR_LAB2RGB)


@torch.inference_mode()
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, strength,
            guidance_scale, seed, eta, threshold, save_memory=False):
    with torch.no_grad():
        img = resize_image(input_image, image_resolution)
        H, W, C = img.shape
        print("img shape: ", img.shape)
        if C == 3:
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
        control = torch.from_numpy(img).to(device).float()
        control = control / 255.0
        control = rearrange(control, 'h w c -> 1 c h w')
        # control = repeat(control, 'b c h w -> b c h w', b=num_samples)
        # control = rearrange(control, 'b h w c -> b c h w')

        if a_prompt:
            prompt = prompt + ', ' + a_prompt

        if seed == -1:
            seed = random.randint(0, 65535)
        seed_everything(seed)

        generator = torch.Generator(device=device).manual_seed(seed)
        # Generate images
        output = pipe(
            num_images_per_prompt=num_samples,
            prompt=prompt,
            image=control.to(device),
            negative_prompt=n_prompt,
            num_inference_steps=ddim_steps,
            guidance_scale=guidance_scale,
            generator=generator,
            eta=eta,
            strength=strength,
            output_type='np',

        ).images

        # output = einops.rearrange(output, 'b c h w -> b h w c')
        output = (output * 127.5 + 127.5).clip(0, 255).astype(np.uint8)

        results = [output[i] for i in range(num_samples)]
        results = [LGB_TO_RGB(img, result) for result in results]

        # results의 각 이미지를 mask로 변환
        masks = []
        for result in results:
            inputs = feature_extractor(images=result, return_tensors="pt")
            outputs = segmodel(**inputs)
            logits = outputs.logits
            logits = logits.squeeze(0)
            thresholded = torch.zeros_like(logits)
            thresholded[logits > threshold] = 1
            mask = thresholded[1:, :, :].sum(dim=0)
            mask = mask.unsqueeze(0).unsqueeze(0)
            mask = interpolate(mask, size=(H, W), mode='bilinear')
            mask = mask.detach().numpy()
            mask = np.squeeze(mask)
            mask = np.where(mask > threshold, 1, 0)
            masks.append(mask)

        # results의 각 이미지를 mask를 이용해 mask가 0인 부분은 img 즉 흑백 이미지로 변환.
        # img를 channel이 3인 rgb 이미지로 변환
        final = [img * (1 - mask[:, :, None]) + result * mask[:, :, None] for result, mask in zip(results, masks)]

    # mask to 255 img

    mask_img = [mask * 255 for mask in masks]
    return [img] + results + mask_img + final


block = gr.Blocks().queue()
with block:
    with gr.Row():
        gr.Markdown("## Control Stable Diffusion with Gray Image")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(sources=['upload'], type="numpy")
            prompt = gr.Textbox(label="Prompt")
            run_button = gr.Button(value="Run")
            with gr.Accordion("Advanced options", open=False):
                num_samples = gr.Slider(label="Images", minimum=1, maximum=1, value=1, step=1, visible=False)
                # num_samples = 1
                image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
                strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
                # guess_mode = gr.Checkbox(label='Guess Mode', value=False)
                ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=20, value=20, step=1)
                scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=1.0, step=0.1)
                threshold = gr.Slider(label="Segmentation Threshold", minimum=0.1, maximum=0.9, value=0.5, step=0.05)
                seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, value=-1, step=1)
                eta = gr.Number(label="eta (DDIM)", value=0.0)
                a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
                n_prompt = gr.Textbox(label="Negative Prompt",
                                      value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
        with gr.Column():
            # result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery")
    ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, strength, scale, seed,
           eta, threshold]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery], concurrency_limit=4)

block.queue(max_size=100)
block.launch(share=True)