Spaces:
Paused
Paused
File size: 8,095 Bytes
f6f903c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import os
from PIL import Image
import json
import random
import cv2
import einops
import gradio as gr
import numpy as np
import torch
from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from torch.nn.functional import threshold, normalize, interpolate
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from einops import rearrange, repeat
import argparse
device = "cuda" if torch.cuda.is_available() else "cpu"
# parse= argparse.ArgumentParser()
# parseadd_argument('--pretrained_model', type=str, default='runwayml/stable-diffusion-v1-5')
# parseadd_argument('--controlnet', type=str, default='controlnet')
# parseadd_argument('--precision', type=str, default='fp32')
# = parseparse_)
# pretrained_model = pretrained_model
pretrained_model = 'runwayml/stable-diffusion-v1-5'
controlnet = 'checkpoint-36000/controlnet'
precision = 'bf16'
# Check for different hardware architectures
if torch.cuda.is_available():
device = "cuda"
# Check for xformers
try:
import xformers
enable_xformers = True
except ImportError:
enable_xformers = False
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
print(f"Using device: {device}")
# Load models
if precision == 'fp32':
torch_dtype = torch.float32
elif precision == 'fp16':
torch_dtype = torch.float16
elif precision == 'bf16':
torch_dtype = torch.bfloat16
else:
raise ValueError(f"Invalid precision: {precision}")
controlnet = ControlNetModel.from_pretrained(controlnet, torch_dtype=torch_dtype)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
pretrained_model, controlnet=controlnet, torch_dtype=torch_dtype
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to(device)
# Apply optimizations based on hardware
if device == "cuda":
pipe = pipe.to(device)
if enable_xformers:
pipe.enable_xformers_memory_efficient_attention()
print("xformers optimization enabled")
elif device == "mps":
pipe = pipe.to(device)
pipe.enable_attention_slicing()
print("Attention slicing enabled for Apple Silicon")
else:
# CPU-specific optimizations
pipe = pipe.to(device)
# pipe.enable_sequential_cpu_offload()
# pipe.enable_attention_slicing()
feature_extractor = SegformerFeatureExtractor.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing")
segmodel = SegformerForSemanticSegmentation.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing")
def LGB_TO_RGB(gray_image, rgb_image):
# gray_image [H, W, 3]
# rgb_image [H, W, 3]
print("gray_image shape: ", gray_image.shape)
print("rgb_image shape: ", rgb_image.shape)
gray_image = cv2.cvtColor(gray_image, cv2.COLOR_RGB2GRAY)
lab_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2LAB)
lab_image[:, :, 0] = gray_image[:, :]
return cv2.cvtColor(lab_image, cv2.COLOR_LAB2RGB)
@torch.inference_mode()
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, strength,
guidance_scale, seed, eta, threshold, save_memory=False):
with torch.no_grad():
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
print("img shape: ", img.shape)
if C == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
control = torch.from_numpy(img).to(device).float()
control = control / 255.0
control = rearrange(control, 'h w c -> 1 c h w')
# control = repeat(control, 'b c h w -> b c h w', b=num_samples)
# control = rearrange(control, 'b h w c -> b c h w')
if a_prompt:
prompt = prompt + ', ' + a_prompt
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
generator = torch.Generator(device=device).manual_seed(seed)
# Generate images
output = pipe(
num_images_per_prompt=num_samples,
prompt=prompt,
image=control.to(device),
negative_prompt=n_prompt,
num_inference_steps=ddim_steps,
guidance_scale=guidance_scale,
generator=generator,
eta=eta,
strength=strength,
output_type='np',
).images
# output = einops.rearrange(output, 'b c h w -> b h w c')
output = (output * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
results = [output[i] for i in range(num_samples)]
results = [LGB_TO_RGB(img, result) for result in results]
# results의 각 이미지를 mask로 변환
masks = []
for result in results:
inputs = feature_extractor(images=result, return_tensors="pt")
outputs = segmodel(**inputs)
logits = outputs.logits
logits = logits.squeeze(0)
thresholded = torch.zeros_like(logits)
thresholded[logits > threshold] = 1
mask = thresholded[1:, :, :].sum(dim=0)
mask = mask.unsqueeze(0).unsqueeze(0)
mask = interpolate(mask, size=(H, W), mode='bilinear')
mask = mask.detach().numpy()
mask = np.squeeze(mask)
mask = np.where(mask > threshold, 1, 0)
masks.append(mask)
# results의 각 이미지를 mask를 이용해 mask가 0인 부분은 img 즉 흑백 이미지로 변환.
# img를 channel이 3인 rgb 이미지로 변환
final = [img * (1 - mask[:, :, None]) + result * mask[:, :, None] for result, mask in zip(results, masks)]
# mask to 255 img
mask_img = [mask * 255 for mask in masks]
return [img] + results + mask_img + final
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("## Control Stable Diffusion with Gray Image")
with gr.Row():
with gr.Column():
input_image = gr.Image(sources=['upload'], type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(value="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=1, value=1, step=1, visible=False)
# num_samples = 1
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
# guess_mode = gr.Checkbox(label='Guess Mode', value=False)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=20, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=1.0, step=0.1)
threshold = gr.Slider(label="Segmentation Threshold", minimum=0.1, maximum=0.9, value=0.5, step=0.05)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, value=-1, step=1)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery")
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, strength, scale, seed,
eta, threshold]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery], concurrency_limit=4)
block.queue(max_size=100)
block.launch(share=True)
|