Noename commited on
Commit
71b38b0
·
verified ·
1 Parent(s): 5f983a2

Delete cldm

Browse files
Files changed (5) hide show
  1. cldm/cldm.py +0 -435
  2. cldm/ddim_hacked.py +0 -317
  3. cldm/hack.py +0 -111
  4. cldm/logger.py +0 -76
  5. cldm/model.py +0 -28
cldm/cldm.py DELETED
@@ -1,435 +0,0 @@
1
- import einops
2
- import torch
3
- import torch as th
4
- import torch.nn as nn
5
-
6
- from ldm.modules.diffusionmodules.util import (
7
- conv_nd,
8
- linear,
9
- zero_module,
10
- timestep_embedding,
11
- )
12
-
13
- from einops import rearrange, repeat
14
- from torchvision.utils import make_grid
15
- from ldm.modules.attention import SpatialTransformer
16
- from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
17
- from ldm.models.diffusion.ddpm import LatentDiffusion
18
- from ldm.util import log_txt_as_img, exists, instantiate_from_config
19
- from ldm.models.diffusion.ddim import DDIMSampler
20
-
21
-
22
- class ControlledUnetModel(UNetModel):
23
- def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
24
- hs = []
25
- with torch.no_grad():
26
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
27
- emb = self.time_embed(t_emb)
28
- h = x.type(self.dtype)
29
- for module in self.input_blocks:
30
- h = module(h, emb, context)
31
- hs.append(h)
32
- h = self.middle_block(h, emb, context)
33
-
34
- if control is not None:
35
- h += control.pop()
36
-
37
- for i, module in enumerate(self.output_blocks):
38
- if only_mid_control or control is None:
39
- h = torch.cat([h, hs.pop()], dim=1)
40
- else:
41
- h = torch.cat([h, hs.pop() + control.pop()], dim=1)
42
- h = module(h, emb, context)
43
-
44
- h = h.type(x.dtype)
45
- return self.out(h)
46
-
47
-
48
- class ControlNet(nn.Module):
49
- def __init__(
50
- self,
51
- image_size,
52
- in_channels,
53
- model_channels,
54
- hint_channels,
55
- num_res_blocks,
56
- attention_resolutions,
57
- dropout=0,
58
- channel_mult=(1, 2, 4, 8),
59
- conv_resample=True,
60
- dims=2,
61
- use_checkpoint=False,
62
- use_fp16=False,
63
- num_heads=-1,
64
- num_head_channels=-1,
65
- num_heads_upsample=-1,
66
- use_scale_shift_norm=False,
67
- resblock_updown=False,
68
- use_new_attention_order=False,
69
- use_spatial_transformer=False, # custom transformer support
70
- transformer_depth=1, # custom transformer support
71
- context_dim=None, # custom transformer support
72
- n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
73
- legacy=True,
74
- disable_self_attentions=None,
75
- num_attention_blocks=None,
76
- disable_middle_self_attn=False,
77
- use_linear_in_transformer=False,
78
- ):
79
- super().__init__()
80
- if use_spatial_transformer:
81
- assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
82
-
83
- if context_dim is not None:
84
- assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
85
- from omegaconf.listconfig import ListConfig
86
- if type(context_dim) == ListConfig:
87
- context_dim = list(context_dim)
88
-
89
- if num_heads_upsample == -1:
90
- num_heads_upsample = num_heads
91
-
92
- if num_heads == -1:
93
- assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
94
-
95
- if num_head_channels == -1:
96
- assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
97
-
98
- self.dims = dims
99
- self.image_size = image_size
100
- self.in_channels = in_channels
101
- self.model_channels = model_channels
102
- if isinstance(num_res_blocks, int):
103
- self.num_res_blocks = len(channel_mult) * [num_res_blocks]
104
- else:
105
- if len(num_res_blocks) != len(channel_mult):
106
- raise ValueError("provide num_res_blocks either as an int (globally constant) or "
107
- "as a list/tuple (per-level) with the same length as channel_mult")
108
- self.num_res_blocks = num_res_blocks
109
- if disable_self_attentions is not None:
110
- # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
111
- assert len(disable_self_attentions) == len(channel_mult)
112
- if num_attention_blocks is not None:
113
- assert len(num_attention_blocks) == len(self.num_res_blocks)
114
- assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
115
- print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
116
- f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
117
- f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
118
- f"attention will still not be set.")
119
-
120
- self.attention_resolutions = attention_resolutions
121
- self.dropout = dropout
122
- self.channel_mult = channel_mult
123
- self.conv_resample = conv_resample
124
- self.use_checkpoint = use_checkpoint
125
- self.dtype = th.float16 if use_fp16 else th.float32
126
- self.num_heads = num_heads
127
- self.num_head_channels = num_head_channels
128
- self.num_heads_upsample = num_heads_upsample
129
- self.predict_codebook_ids = n_embed is not None
130
-
131
- time_embed_dim = model_channels * 4
132
- self.time_embed = nn.Sequential(
133
- linear(model_channels, time_embed_dim),
134
- nn.SiLU(),
135
- linear(time_embed_dim, time_embed_dim),
136
- )
137
-
138
- self.input_blocks = nn.ModuleList(
139
- [
140
- TimestepEmbedSequential(
141
- conv_nd(dims, in_channels, model_channels, 3, padding=1)
142
- )
143
- ]
144
- )
145
- self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
146
-
147
- self.input_hint_block = TimestepEmbedSequential(
148
- conv_nd(dims, hint_channels, 16, 3, padding=1),
149
- nn.SiLU(),
150
- conv_nd(dims, 16, 16, 3, padding=1),
151
- nn.SiLU(),
152
- conv_nd(dims, 16, 32, 3, padding=1, stride=2),
153
- nn.SiLU(),
154
- conv_nd(dims, 32, 32, 3, padding=1),
155
- nn.SiLU(),
156
- conv_nd(dims, 32, 96, 3, padding=1, stride=2),
157
- nn.SiLU(),
158
- conv_nd(dims, 96, 96, 3, padding=1),
159
- nn.SiLU(),
160
- conv_nd(dims, 96, 256, 3, padding=1, stride=2),
161
- nn.SiLU(),
162
- zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
163
- )
164
-
165
- self._feature_size = model_channels
166
- input_block_chans = [model_channels]
167
- ch = model_channels
168
- ds = 1
169
- for level, mult in enumerate(channel_mult):
170
- for nr in range(self.num_res_blocks[level]):
171
- layers = [
172
- ResBlock(
173
- ch,
174
- time_embed_dim,
175
- dropout,
176
- out_channels=mult * model_channels,
177
- dims=dims,
178
- use_checkpoint=use_checkpoint,
179
- use_scale_shift_norm=use_scale_shift_norm,
180
- )
181
- ]
182
- ch = mult * model_channels
183
- if ds in attention_resolutions:
184
- if num_head_channels == -1:
185
- dim_head = ch // num_heads
186
- else:
187
- num_heads = ch // num_head_channels
188
- dim_head = num_head_channels
189
- if legacy:
190
- # num_heads = 1
191
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
192
- if exists(disable_self_attentions):
193
- disabled_sa = disable_self_attentions[level]
194
- else:
195
- disabled_sa = False
196
-
197
- if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
198
- layers.append(
199
- AttentionBlock(
200
- ch,
201
- use_checkpoint=use_checkpoint,
202
- num_heads=num_heads,
203
- num_head_channels=dim_head,
204
- use_new_attention_order=use_new_attention_order,
205
- ) if not use_spatial_transformer else SpatialTransformer(
206
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
207
- disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
208
- use_checkpoint=use_checkpoint
209
- )
210
- )
211
- self.input_blocks.append(TimestepEmbedSequential(*layers))
212
- self.zero_convs.append(self.make_zero_conv(ch))
213
- self._feature_size += ch
214
- input_block_chans.append(ch)
215
- if level != len(channel_mult) - 1:
216
- out_ch = ch
217
- self.input_blocks.append(
218
- TimestepEmbedSequential(
219
- ResBlock(
220
- ch,
221
- time_embed_dim,
222
- dropout,
223
- out_channels=out_ch,
224
- dims=dims,
225
- use_checkpoint=use_checkpoint,
226
- use_scale_shift_norm=use_scale_shift_norm,
227
- down=True,
228
- )
229
- if resblock_updown
230
- else Downsample(
231
- ch, conv_resample, dims=dims, out_channels=out_ch
232
- )
233
- )
234
- )
235
- ch = out_ch
236
- input_block_chans.append(ch)
237
- self.zero_convs.append(self.make_zero_conv(ch))
238
- ds *= 2
239
- self._feature_size += ch
240
-
241
- if num_head_channels == -1:
242
- dim_head = ch // num_heads
243
- else:
244
- num_heads = ch // num_head_channels
245
- dim_head = num_head_channels
246
- if legacy:
247
- # num_heads = 1
248
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
249
- self.middle_block = TimestepEmbedSequential(
250
- ResBlock(
251
- ch,
252
- time_embed_dim,
253
- dropout,
254
- dims=dims,
255
- use_checkpoint=use_checkpoint,
256
- use_scale_shift_norm=use_scale_shift_norm,
257
- ),
258
- AttentionBlock(
259
- ch,
260
- use_checkpoint=use_checkpoint,
261
- num_heads=num_heads,
262
- num_head_channels=dim_head,
263
- use_new_attention_order=use_new_attention_order,
264
- ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
265
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
266
- disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
267
- use_checkpoint=use_checkpoint
268
- ),
269
- ResBlock(
270
- ch,
271
- time_embed_dim,
272
- dropout,
273
- dims=dims,
274
- use_checkpoint=use_checkpoint,
275
- use_scale_shift_norm=use_scale_shift_norm,
276
- ),
277
- )
278
- self.middle_block_out = self.make_zero_conv(ch)
279
- self._feature_size += ch
280
-
281
- def make_zero_conv(self, channels):
282
- return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
283
-
284
- def forward(self, x, hint, timesteps, context, **kwargs):
285
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
286
- emb = self.time_embed(t_emb)
287
-
288
- guided_hint = self.input_hint_block(hint, emb, context)
289
-
290
- outs = []
291
-
292
- h = x.type(self.dtype)
293
- for module, zero_conv in zip(self.input_blocks, self.zero_convs):
294
- if guided_hint is not None:
295
- h = module(h, emb, context)
296
- h += guided_hint
297
- guided_hint = None
298
- else:
299
- h = module(h, emb, context)
300
- outs.append(zero_conv(h, emb, context))
301
-
302
- h = self.middle_block(h, emb, context)
303
- outs.append(self.middle_block_out(h, emb, context))
304
-
305
- return outs
306
-
307
-
308
- class ControlLDM(LatentDiffusion):
309
-
310
- def __init__(self, control_stage_config, control_key, only_mid_control, *args, **kwargs):
311
- super().__init__(*args, **kwargs)
312
- self.control_model = instantiate_from_config(control_stage_config)
313
- self.control_key = control_key
314
- self.only_mid_control = only_mid_control
315
- self.control_scales = [1.0] * 13
316
-
317
- @torch.no_grad()
318
- def get_input(self, batch, k, bs=None, *args, **kwargs):
319
- x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs)
320
- control = batch[self.control_key]
321
- if bs is not None:
322
- control = control[:bs]
323
- control = control.to(self.device)
324
- control = einops.rearrange(control, 'b h w c -> b c h w')
325
- control = control.to(memory_format=torch.contiguous_format).float()
326
- return x, dict(c_crossattn=[c], c_concat=[control])
327
-
328
- def apply_model(self, x_noisy, t, cond, *args, **kwargs):
329
- assert isinstance(cond, dict)
330
- diffusion_model = self.model.diffusion_model
331
-
332
- cond_txt = torch.cat(cond['c_crossattn'], 1)
333
-
334
- if cond['c_concat'] is None:
335
- eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control)
336
- else:
337
- control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt)
338
- control = [c * scale for c, scale in zip(control, self.control_scales)]
339
- eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control)
340
-
341
- return eps
342
-
343
- @torch.no_grad()
344
- def get_unconditional_conditioning(self, N):
345
- return self.get_learned_conditioning([""] * N)
346
-
347
- @torch.no_grad()
348
- def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
349
- quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
350
- plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
351
- use_ema_scope=True,
352
- **kwargs):
353
- use_ddim = ddim_steps is not None
354
-
355
- log = dict()
356
- z, c = self.get_input(batch, self.first_stage_key, bs=N)
357
- c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N]
358
- N = min(z.shape[0], N)
359
- n_row = min(z.shape[0], n_row)
360
- log["reconstruction"] = self.decode_first_stage(z)
361
- log["control"] = c_cat * 2.0 - 1.0
362
- log["conditioning"] = log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16)
363
-
364
- if plot_diffusion_rows:
365
- # get diffusion row
366
- diffusion_row = list()
367
- z_start = z[:n_row]
368
- for t in range(self.num_timesteps):
369
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
370
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
371
- t = t.to(self.device).long()
372
- noise = torch.randn_like(z_start)
373
- z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
374
- diffusion_row.append(self.decode_first_stage(z_noisy))
375
-
376
- diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
377
- diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
378
- diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
379
- diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
380
- log["diffusion_row"] = diffusion_grid
381
-
382
- if sample:
383
- # get denoise row
384
- samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
385
- batch_size=N, ddim=use_ddim,
386
- ddim_steps=ddim_steps, eta=ddim_eta)
387
- x_samples = self.decode_first_stage(samples)
388
- log["samples"] = x_samples
389
- if plot_denoise_rows:
390
- denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
391
- log["denoise_row"] = denoise_grid
392
-
393
- if unconditional_guidance_scale > 1.0:
394
- uc_cross = self.get_unconditional_conditioning(N)
395
- uc_cat = c_cat # torch.zeros_like(c_cat)
396
- uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
397
- samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
398
- batch_size=N, ddim=use_ddim,
399
- ddim_steps=ddim_steps, eta=ddim_eta,
400
- unconditional_guidance_scale=unconditional_guidance_scale,
401
- unconditional_conditioning=uc_full,
402
- )
403
- x_samples_cfg = self.decode_first_stage(samples_cfg)
404
- log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
405
-
406
- return log
407
-
408
- @torch.no_grad()
409
- def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
410
- ddim_sampler = DDIMSampler(self)
411
- b, c, h, w = cond["c_concat"][0].shape
412
- shape = (self.channels, h // 8, w // 8)
413
- samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs)
414
- return samples, intermediates
415
-
416
- def configure_optimizers(self):
417
- lr = self.learning_rate
418
- params = list(self.control_model.parameters())
419
- if not self.sd_locked:
420
- params += list(self.model.diffusion_model.output_blocks.parameters())
421
- params += list(self.model.diffusion_model.out.parameters())
422
- opt = torch.optim.AdamW(params, lr=lr)
423
- return opt
424
-
425
- def low_vram_shift(self, is_diffusing):
426
- if is_diffusing:
427
- self.model = self.model.cuda()
428
- self.control_model = self.control_model.cuda()
429
- self.first_stage_model = self.first_stage_model.cpu()
430
- self.cond_stage_model = self.cond_stage_model.cpu()
431
- else:
432
- self.model = self.model.cpu()
433
- self.control_model = self.control_model.cpu()
434
- self.first_stage_model = self.first_stage_model.cuda()
435
- self.cond_stage_model = self.cond_stage_model.cuda()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cldm/ddim_hacked.py DELETED
@@ -1,317 +0,0 @@
1
- """SAMPLING ONLY."""
2
-
3
- import torch
4
- import numpy as np
5
- from tqdm import tqdm
6
-
7
- from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
8
-
9
-
10
- class DDIMSampler(object):
11
- def __init__(self, model, schedule="linear", **kwargs):
12
- super().__init__()
13
- self.model = model
14
- self.ddpm_num_timesteps = model.num_timesteps
15
- self.schedule = schedule
16
-
17
- def register_buffer(self, name, attr):
18
- if type(attr) == torch.Tensor:
19
- if attr.device != torch.device("cuda"):
20
- attr = attr.to(torch.device("cuda"))
21
- setattr(self, name, attr)
22
-
23
- def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
24
- self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
25
- num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
26
- alphas_cumprod = self.model.alphas_cumprod
27
- assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
28
- to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
29
-
30
- self.register_buffer('betas', to_torch(self.model.betas))
31
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
32
- self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
33
-
34
- # calculations for diffusion q(x_t | x_{t-1}) and others
35
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
36
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
37
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
38
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
39
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
40
-
41
- # ddim sampling parameters
42
- ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
43
- ddim_timesteps=self.ddim_timesteps,
44
- eta=ddim_eta,verbose=verbose)
45
- self.register_buffer('ddim_sigmas', ddim_sigmas)
46
- self.register_buffer('ddim_alphas', ddim_alphas)
47
- self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
48
- self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
49
- sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
50
- (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
51
- 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
52
- self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
53
-
54
- @torch.no_grad()
55
- def sample(self,
56
- S,
57
- batch_size,
58
- shape,
59
- conditioning=None,
60
- callback=None,
61
- normals_sequence=None,
62
- img_callback=None,
63
- quantize_x0=False,
64
- eta=0.,
65
- mask=None,
66
- x0=None,
67
- temperature=1.,
68
- noise_dropout=0.,
69
- score_corrector=None,
70
- corrector_kwargs=None,
71
- verbose=True,
72
- x_T=None,
73
- log_every_t=100,
74
- unconditional_guidance_scale=1.,
75
- unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
76
- dynamic_threshold=None,
77
- ucg_schedule=None,
78
- **kwargs
79
- ):
80
- if conditioning is not None:
81
- if isinstance(conditioning, dict):
82
- ctmp = conditioning[list(conditioning.keys())[0]]
83
- while isinstance(ctmp, list): ctmp = ctmp[0]
84
- cbs = ctmp.shape[0]
85
- if cbs != batch_size:
86
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
87
-
88
- elif isinstance(conditioning, list):
89
- for ctmp in conditioning:
90
- if ctmp.shape[0] != batch_size:
91
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
92
-
93
- else:
94
- if conditioning.shape[0] != batch_size:
95
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
96
-
97
- self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
98
- # sampling
99
- C, H, W = shape
100
- size = (batch_size, C, H, W)
101
- print(f'Data shape for DDIM sampling is {size}, eta {eta}')
102
-
103
- samples, intermediates = self.ddim_sampling(conditioning, size,
104
- callback=callback,
105
- img_callback=img_callback,
106
- quantize_denoised=quantize_x0,
107
- mask=mask, x0=x0,
108
- ddim_use_original_steps=False,
109
- noise_dropout=noise_dropout,
110
- temperature=temperature,
111
- score_corrector=score_corrector,
112
- corrector_kwargs=corrector_kwargs,
113
- x_T=x_T,
114
- log_every_t=log_every_t,
115
- unconditional_guidance_scale=unconditional_guidance_scale,
116
- unconditional_conditioning=unconditional_conditioning,
117
- dynamic_threshold=dynamic_threshold,
118
- ucg_schedule=ucg_schedule
119
- )
120
- return samples, intermediates
121
-
122
- @torch.no_grad()
123
- def ddim_sampling(self, cond, shape,
124
- x_T=None, ddim_use_original_steps=False,
125
- callback=None, timesteps=None, quantize_denoised=False,
126
- mask=None, x0=None, img_callback=None, log_every_t=100,
127
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
128
- unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
129
- ucg_schedule=None):
130
- device = self.model.betas.device
131
- b = shape[0]
132
- if x_T is None:
133
- img = torch.randn(shape, device=device)
134
- else:
135
- img = x_T
136
-
137
- if timesteps is None:
138
- timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
139
- elif timesteps is not None and not ddim_use_original_steps:
140
- subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
141
- timesteps = self.ddim_timesteps[:subset_end]
142
-
143
- intermediates = {'x_inter': [img], 'pred_x0': [img]}
144
- time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
145
- total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
146
- print(f"Running DDIM Sampling with {total_steps} timesteps")
147
-
148
- iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
149
-
150
- for i, step in enumerate(iterator):
151
- index = total_steps - i - 1
152
- ts = torch.full((b,), step, device=device, dtype=torch.long)
153
-
154
- if mask is not None:
155
- assert x0 is not None
156
- img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
157
- img = img_orig * mask + (1. - mask) * img
158
-
159
- if ucg_schedule is not None:
160
- assert len(ucg_schedule) == len(time_range)
161
- unconditional_guidance_scale = ucg_schedule[i]
162
-
163
- outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
164
- quantize_denoised=quantize_denoised, temperature=temperature,
165
- noise_dropout=noise_dropout, score_corrector=score_corrector,
166
- corrector_kwargs=corrector_kwargs,
167
- unconditional_guidance_scale=unconditional_guidance_scale,
168
- unconditional_conditioning=unconditional_conditioning,
169
- dynamic_threshold=dynamic_threshold)
170
- img, pred_x0 = outs
171
- if callback: callback(i)
172
- if img_callback: img_callback(pred_x0, i)
173
-
174
- if index % log_every_t == 0 or index == total_steps - 1:
175
- intermediates['x_inter'].append(img)
176
- intermediates['pred_x0'].append(pred_x0)
177
-
178
- return img, intermediates
179
-
180
- @torch.no_grad()
181
- def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
182
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
183
- unconditional_guidance_scale=1., unconditional_conditioning=None,
184
- dynamic_threshold=None):
185
- b, *_, device = *x.shape, x.device
186
-
187
- if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
188
- model_output = self.model.apply_model(x, t, c)
189
- else:
190
- model_t = self.model.apply_model(x, t, c)
191
- model_uncond = self.model.apply_model(x, t, unconditional_conditioning)
192
- model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
193
-
194
- if self.model.parameterization == "v":
195
- e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
196
- else:
197
- e_t = model_output
198
-
199
- if score_corrector is not None:
200
- assert self.model.parameterization == "eps", 'not implemented'
201
- e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
202
-
203
- alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
204
- alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
205
- sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
206
- sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
207
- # select parameters corresponding to the currently considered timestep
208
- a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
209
- a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
210
- sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
211
- sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
212
-
213
- # current prediction for x_0
214
- if self.model.parameterization != "v":
215
- pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
216
- else:
217
- pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
218
-
219
- if quantize_denoised:
220
- pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
221
-
222
- if dynamic_threshold is not None:
223
- raise NotImplementedError()
224
-
225
- # direction pointing to x_t
226
- dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
227
- noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
228
- if noise_dropout > 0.:
229
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
230
- x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
231
- return x_prev, pred_x0
232
-
233
- @torch.no_grad()
234
- def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
235
- unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
236
- timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
237
- num_reference_steps = timesteps.shape[0]
238
-
239
- assert t_enc <= num_reference_steps
240
- num_steps = t_enc
241
-
242
- if use_original_steps:
243
- alphas_next = self.alphas_cumprod[:num_steps]
244
- alphas = self.alphas_cumprod_prev[:num_steps]
245
- else:
246
- alphas_next = self.ddim_alphas[:num_steps]
247
- alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
248
-
249
- x_next = x0
250
- intermediates = []
251
- inter_steps = []
252
- for i in tqdm(range(num_steps), desc='Encoding Image'):
253
- t = torch.full((x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long)
254
- if unconditional_guidance_scale == 1.:
255
- noise_pred = self.model.apply_model(x_next, t, c)
256
- else:
257
- assert unconditional_conditioning is not None
258
- e_t_uncond, noise_pred = torch.chunk(
259
- self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
260
- torch.cat((unconditional_conditioning, c))), 2)
261
- noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
262
-
263
- xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
264
- weighted_noise_pred = alphas_next[i].sqrt() * (
265
- (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
266
- x_next = xt_weighted + weighted_noise_pred
267
- if return_intermediates and i % (
268
- num_steps // return_intermediates) == 0 and i < num_steps - 1:
269
- intermediates.append(x_next)
270
- inter_steps.append(i)
271
- elif return_intermediates and i >= num_steps - 2:
272
- intermediates.append(x_next)
273
- inter_steps.append(i)
274
- if callback: callback(i)
275
-
276
- out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
277
- if return_intermediates:
278
- out.update({'intermediates': intermediates})
279
- return x_next, out
280
-
281
- @torch.no_grad()
282
- def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
283
- # fast, but does not allow for exact reconstruction
284
- # t serves as an index to gather the correct alphas
285
- if use_original_steps:
286
- sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
287
- sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
288
- else:
289
- sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
290
- sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
291
-
292
- if noise is None:
293
- noise = torch.randn_like(x0)
294
- return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
295
- extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
296
-
297
- @torch.no_grad()
298
- def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
299
- use_original_steps=False, callback=None):
300
-
301
- timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
302
- timesteps = timesteps[:t_start]
303
-
304
- time_range = np.flip(timesteps)
305
- total_steps = timesteps.shape[0]
306
- print(f"Running DDIM Sampling with {total_steps} timesteps")
307
-
308
- iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
309
- x_dec = x_latent
310
- for i, step in enumerate(iterator):
311
- index = total_steps - i - 1
312
- ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
313
- x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
314
- unconditional_guidance_scale=unconditional_guidance_scale,
315
- unconditional_conditioning=unconditional_conditioning)
316
- if callback: callback(i)
317
- return x_dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cldm/hack.py DELETED
@@ -1,111 +0,0 @@
1
- import torch
2
- import einops
3
-
4
- import ldm.modules.encoders.modules
5
- import ldm.modules.attention
6
-
7
- from transformers import logging
8
- from ldm.modules.attention import default
9
-
10
-
11
- def disable_verbosity():
12
- logging.set_verbosity_error()
13
- print('logging improved.')
14
- return
15
-
16
-
17
- def enable_sliced_attention():
18
- ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward
19
- print('Enabled sliced_attention.')
20
- return
21
-
22
-
23
- def hack_everything(clip_skip=0):
24
- disable_verbosity()
25
- ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward
26
- ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip
27
- print('Enabled clip hacks.')
28
- return
29
-
30
-
31
- # Written by Lvmin
32
- def _hacked_clip_forward(self, text):
33
- PAD = self.tokenizer.pad_token_id
34
- EOS = self.tokenizer.eos_token_id
35
- BOS = self.tokenizer.bos_token_id
36
-
37
- def tokenize(t):
38
- return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"]
39
-
40
- def transformer_encode(t):
41
- if self.clip_skip > 1:
42
- rt = self.transformer(input_ids=t, output_hidden_states=True)
43
- return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip])
44
- else:
45
- return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state
46
-
47
- def split(x):
48
- return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3]
49
-
50
- def pad(x, p, i):
51
- return x[:i] if len(x) >= i else x + [p] * (i - len(x))
52
-
53
- raw_tokens_list = tokenize(text)
54
- tokens_list = []
55
-
56
- for raw_tokens in raw_tokens_list:
57
- raw_tokens_123 = split(raw_tokens)
58
- raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123]
59
- raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123]
60
- tokens_list.append(raw_tokens_123)
61
-
62
- tokens_list = torch.IntTensor(tokens_list).to(self.device)
63
-
64
- feed = einops.rearrange(tokens_list, 'b f i -> (b f) i')
65
- y = transformer_encode(feed)
66
- z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3)
67
-
68
- return z
69
-
70
-
71
- # Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py
72
- def _hacked_sliced_attentin_forward(self, x, context=None, mask=None):
73
- h = self.heads
74
-
75
- q = self.to_q(x)
76
- context = default(context, x)
77
- k = self.to_k(context)
78
- v = self.to_v(context)
79
- del context, x
80
-
81
- q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
82
-
83
- limit = k.shape[0]
84
- att_step = 1
85
- q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0))
86
- k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0))
87
- v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0))
88
-
89
- q_chunks.reverse()
90
- k_chunks.reverse()
91
- v_chunks.reverse()
92
- sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
93
- del k, q, v
94
- for i in range(0, limit, att_step):
95
- q_buffer = q_chunks.pop()
96
- k_buffer = k_chunks.pop()
97
- v_buffer = v_chunks.pop()
98
- sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale
99
-
100
- del k_buffer, q_buffer
101
- # attention, what we cannot get enough of, by chunks
102
-
103
- sim_buffer = sim_buffer.softmax(dim=-1)
104
-
105
- sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer)
106
- del v_buffer
107
- sim[i:i + att_step, :, :] = sim_buffer
108
-
109
- del sim_buffer
110
- sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h)
111
- return self.to_out(sim)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cldm/logger.py DELETED
@@ -1,76 +0,0 @@
1
- import os
2
-
3
- import numpy as np
4
- import torch
5
- import torchvision
6
- from PIL import Image
7
- from pytorch_lightning.callbacks import Callback
8
- from pytorch_lightning.utilities.distributed import rank_zero_only
9
-
10
-
11
- class ImageLogger(Callback):
12
- def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True,
13
- rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
14
- log_images_kwargs=None):
15
- super().__init__()
16
- self.rescale = rescale
17
- self.batch_freq = batch_frequency
18
- self.max_images = max_images
19
- if not increase_log_steps:
20
- self.log_steps = [self.batch_freq]
21
- self.clamp = clamp
22
- self.disabled = disabled
23
- self.log_on_batch_idx = log_on_batch_idx
24
- self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
25
- self.log_first_step = log_first_step
26
-
27
- @rank_zero_only
28
- def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx):
29
- root = os.path.join(save_dir, "image_log", split)
30
- for k in images:
31
- grid = torchvision.utils.make_grid(images[k], nrow=4)
32
- if self.rescale:
33
- grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
34
- grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
35
- grid = grid.numpy()
36
- grid = (grid * 255).astype(np.uint8)
37
- filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx)
38
- path = os.path.join(root, filename)
39
- os.makedirs(os.path.split(path)[0], exist_ok=True)
40
- Image.fromarray(grid).save(path)
41
-
42
- def log_img(self, pl_module, batch, batch_idx, split="train"):
43
- check_idx = batch_idx # if self.log_on_batch_idx else pl_module.global_step
44
- if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
45
- hasattr(pl_module, "log_images") and
46
- callable(pl_module.log_images) and
47
- self.max_images > 0):
48
- logger = type(pl_module.logger)
49
-
50
- is_train = pl_module.training
51
- if is_train:
52
- pl_module.eval()
53
-
54
- with torch.no_grad():
55
- images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
56
-
57
- for k in images:
58
- N = min(images[k].shape[0], self.max_images)
59
- images[k] = images[k][:N]
60
- if isinstance(images[k], torch.Tensor):
61
- images[k] = images[k].detach().cpu()
62
- if self.clamp:
63
- images[k] = torch.clamp(images[k], -1., 1.)
64
-
65
- self.log_local(pl_module.logger.save_dir, split, images,
66
- pl_module.global_step, pl_module.current_epoch, batch_idx)
67
-
68
- if is_train:
69
- pl_module.train()
70
-
71
- def check_frequency(self, check_idx):
72
- return check_idx % self.batch_freq == 0
73
-
74
- def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
75
- if not self.disabled:
76
- self.log_img(pl_module, batch, batch_idx, split="train")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cldm/model.py DELETED
@@ -1,28 +0,0 @@
1
- import os
2
- import torch
3
-
4
- from omegaconf import OmegaConf
5
- from ldm.util import instantiate_from_config
6
-
7
-
8
- def get_state_dict(d):
9
- return d.get('state_dict', d)
10
-
11
-
12
- def load_state_dict(ckpt_path, location='cpu'):
13
- _, extension = os.path.splitext(ckpt_path)
14
- if extension.lower() == ".safetensors":
15
- import safetensors.torch
16
- state_dict = safetensors.torch.load_file(ckpt_path, device=location)
17
- else:
18
- state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
19
- state_dict = get_state_dict(state_dict)
20
- print(f'Loaded state_dict from [{ckpt_path}]')
21
- return state_dict
22
-
23
-
24
- def create_model(config_path):
25
- config = OmegaConf.load(config_path)
26
- model = instantiate_from_config(config.model).cpu()
27
- print(f'Loaded model config from [{config_path}]')
28
- return model