Noename commited on
Commit
dca6b80
·
1 Parent(s): e50a1bb

remove args

Browse files
Files changed (1) hide show
  1. app.py +15 -12
app.py CHANGED
@@ -20,12 +20,15 @@ import argparse
20
 
21
  device = "cuda" if torch.cuda.is_available() else "cpu"
22
 
23
- parseargs = argparse.ArgumentParser()
24
- parseargs.add_argument('--pretrained_model', type=str, default='runwayml/stable-diffusion-v1-5')
25
- parseargs.add_argument('--controlnet', type=str, default='controlnet')
26
- parseargs.add_argument('--precision', type=str, default='fp32')
27
- args = parseargs.parse_args()
28
- pretrained_model = args.pretrained_model
 
 
 
29
 
30
  # Check for different hardware architectures
31
  if torch.cuda.is_available():
@@ -45,18 +48,18 @@ else:
45
  print(f"Using device: {device}")
46
 
47
  # Load models
48
- if args.precision == 'fp32':
49
  torch_dtype = torch.float32
50
- elif args.precision == 'fp16':
51
  torch_dtype = torch.float16
52
- elif args.precision == 'bf16':
53
  torch_dtype = torch.bfloat16
54
  else:
55
- raise ValueError(f"Invalid precision: {args.precision}")
56
 
57
- controlnet = ControlNetModel.from_pretrained(args.controlnet, torch_dtype=torch_dtype)
58
  pipe = StableDiffusionControlNetPipeline.from_pretrained(
59
- args.pretrained_model, controlnet=controlnet, torch_dtype=torch_dtype
60
  )
61
  pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
62
  pipe = pipe.to(device)
 
20
 
21
  device = "cuda" if torch.cuda.is_available() else "cpu"
22
 
23
+ # parse= argparse.ArgumentParser()
24
+ # parseadd_argument('--pretrained_model', type=str, default='runwayml/stable-diffusion-v1-5')
25
+ # parseadd_argument('--controlnet', type=str, default='controlnet')
26
+ # parseadd_argument('--precision', type=str, default='fp32')
27
+ # = parseparse_)
28
+ # pretrained_model = pretrained_model
29
+ pretrained_model = 'runwayml/stable-diffusion-v1-5'
30
+ controlnet = 'checkpoint-36000/controlnet'
31
+ precision = 'bf16'
32
 
33
  # Check for different hardware architectures
34
  if torch.cuda.is_available():
 
48
  print(f"Using device: {device}")
49
 
50
  # Load models
51
+ if precision == 'fp32':
52
  torch_dtype = torch.float32
53
+ elif precision == 'fp16':
54
  torch_dtype = torch.float16
55
+ elif precision == 'bf16':
56
  torch_dtype = torch.bfloat16
57
  else:
58
+ raise ValueError(f"Invalid precision: {precision}")
59
 
60
+ controlnet = ControlNetModel.from_pretrained(controlnet, torch_dtype=torch_dtype)
61
  pipe = StableDiffusionControlNetPipeline.from_pretrained(
62
+ pretrained_model, controlnet=controlnet, torch_dtype=torch_dtype
63
  )
64
  pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
65
  pipe = pipe.to(device)