File size: 14,377 Bytes
c509e76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
# Densenet decoder encoder with intermediate fully connected layers and dropout
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import functools
from torch.autograd import gradcheck
from torch.autograd import Function
from torch.autograd import Variable
from torch.autograd import gradcheck
from torch.autograd import Function
import numpy as np
def add_coordConv_channels(t):
n,c,h,w=t.size()
xx_channel=np.ones((h, w))
xx_range=np.array(range(h))
xx_range=np.expand_dims(xx_range,-1)
xx_coord=xx_channel*xx_range
yy_coord=xx_coord.transpose()
xx_coord=xx_coord/(h-1)
yy_coord=yy_coord/(h-1)
xx_coord=xx_coord*2 - 1
yy_coord=yy_coord*2 - 1
xx_coord=torch.from_numpy(xx_coord).float()
yy_coord=torch.from_numpy(yy_coord).float()
if t.is_cuda:
xx_coord=xx_coord.cuda()
yy_coord=yy_coord.cuda()
xx_coord=xx_coord.unsqueeze(0).unsqueeze(0).repeat(n,1,1,1)
yy_coord=yy_coord.unsqueeze(0).unsqueeze(0).repeat(n,1,1,1)
t_cc=torch.cat((t,xx_coord,yy_coord),dim=1)
return t_cc
class DenseBlockEncoder(nn.Module):
def __init__(self, n_channels, n_convs, activation=nn.ReLU, args=[False]):
super(DenseBlockEncoder, self).__init__()
assert(n_convs > 0)
self.n_channels = n_channels
self.n_convs = n_convs
self.layers = nn.ModuleList()
for i in range(n_convs):
self.layers.append(nn.Sequential(
nn.BatchNorm2d(n_channels),
activation(*args),
nn.Conv2d(n_channels, n_channels, 3, stride=1, padding=1, bias=False),))
def forward(self, inputs):
outputs = []
for i, layer in enumerate(self.layers):
if i > 0:
next_output = 0
for no in outputs:
next_output = next_output + no
outputs.append(next_output)
else:
outputs.append(layer(inputs))
return outputs[-1]
# Dense block in encoder.
class DenseBlockDecoder(nn.Module):
def __init__(self, n_channels, n_convs, activation=nn.ReLU, args=[False]):
super(DenseBlockDecoder, self).__init__()
assert(n_convs > 0)
self.n_channels = n_channels
self.n_convs = n_convs
self.layers = nn.ModuleList()
for i in range(n_convs):
self.layers.append(nn.Sequential(
nn.BatchNorm2d(n_channels),
activation(*args),
nn.ConvTranspose2d(n_channels, n_channels, 3, stride=1, padding=1, bias=False),))
def forward(self, inputs):
outputs = []
for i, layer in enumerate(self.layers):
if i > 0:
next_output = 0
for no in outputs:
next_output = next_output + no
outputs.append(next_output)
else:
outputs.append(layer(inputs))
return outputs[-1]
class DenseTransitionBlockEncoder(nn.Module):
def __init__(self, n_channels_in, n_channels_out, mp, activation=nn.ReLU, args=[False]):
super(DenseTransitionBlockEncoder, self).__init__()
self.n_channels_in = n_channels_in
self.n_channels_out = n_channels_out
self.mp = mp
self.main = nn.Sequential(
nn.BatchNorm2d(n_channels_in),
activation(*args),
nn.Conv2d(n_channels_in, n_channels_out, 1, stride=1, padding=0, bias=False),
nn.MaxPool2d(mp),
)
def forward(self, inputs):
# print(inputs.shape,'222222222222222',self.main(inputs).shape)
return self.main(inputs)
class DenseTransitionBlockDecoder(nn.Module):
def __init__(self, n_channels_in, n_channels_out, activation=nn.ReLU, args=[False]):
super(DenseTransitionBlockDecoder, self).__init__()
self.n_channels_in = n_channels_in
self.n_channels_out = n_channels_out
self.main = nn.Sequential(
nn.BatchNorm2d(n_channels_in),
activation(*args),
nn.ConvTranspose2d(n_channels_in, n_channels_out, 4, stride=2, padding=1, bias=False),
)
def forward(self, inputs):
# print(inputs.shape,'333333333333',self.main(inputs).shape)
return self.main(inputs)
## Dense encoders and decoders for image of size 128 128
class waspDenseEncoder128(nn.Module):
def __init__(self, nc=1, ndf = 32, ndim = 128, activation=nn.LeakyReLU, args=[0.2, False], f_activation=nn.Tanh, f_args=[]):
super(waspDenseEncoder128, self).__init__()
self.ndim = ndim
self.main = nn.Sequential(
# input is (nc) x 128 x 128
nn.BatchNorm2d(nc),
nn.ReLU(True),
nn.Conv2d(nc, ndf, 4, stride=2, padding=1),
# state size. (ndf) x 64 x 64
DenseBlockEncoder(ndf, 6),
DenseTransitionBlockEncoder(ndf, ndf*2, 2, activation=activation, args=args),
# state size. (ndf*2) x 32 x 32
DenseBlockEncoder(ndf*2, 12),
DenseTransitionBlockEncoder(ndf*2, ndf*4, 2, activation=activation, args=args),
# state size. (ndf*4) x 16 x 16
DenseBlockEncoder(ndf*4, 16),
DenseTransitionBlockEncoder(ndf*4, ndf*8, 2, activation=activation, args=args),
# state size. (ndf*4) x 8 x 8
DenseBlockEncoder(ndf*8, 16),
DenseTransitionBlockEncoder(ndf*8, ndf*8, 2, activation=activation, args=args),
# state size. (ndf*8) x 4 x 4
DenseBlockEncoder(ndf*8, 16),
DenseTransitionBlockEncoder(ndf*8, ndim, 4, activation=activation, args=args),
f_activation(*f_args),
)
def forward(self, input):
input=add_coordConv_channels(input)
output = self.main(input).view(-1,self.ndim)
#print(output.size())
return output
class waspDenseDecoder128(nn.Module):
def __init__(self, nz=128, nc=1, ngf=32, lb=0, ub=1, activation=nn.ReLU, args=[False], f_activation=nn.Hardtanh, f_args=[]):
super(waspDenseDecoder128, self).__init__()
self.main = nn.Sequential(
# input is Z, going into convolution
nn.BatchNorm2d(nz),
activation(*args),
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
# state size. (ngf*8) x 4 x 4
DenseBlockDecoder(ngf*8, 16),
DenseTransitionBlockDecoder(ngf*8, ngf*8),
# state size. (ngf*4) x 8 x 8
DenseBlockDecoder(ngf*8, 16),
DenseTransitionBlockDecoder(ngf*8, ngf*4),
# state size. (ngf*2) x 16 x 16
DenseBlockDecoder(ngf*4, 12),
DenseTransitionBlockDecoder(ngf*4, ngf*2),
# state size. (ngf) x 32 x 32
DenseBlockDecoder(ngf*2, 6),
DenseTransitionBlockDecoder(ngf*2, ngf),
# state size. (ngf) x 64 x 64
DenseBlockDecoder(ngf, 6),
DenseTransitionBlockDecoder(ngf, ngf),
# state size (ngf) x 128 x 128
nn.BatchNorm2d(ngf),
activation(*args),
nn.ConvTranspose2d(ngf, nc, 3, stride=1, padding=1, bias=False),
f_activation(*f_args),
)
# self.smooth=nn.Sequential(
# nn.Conv2d(nc, nc, 1, stride=1, padding=0, bias=False),
# f_activation(*f_args),
# )
def forward(self, inputs):
# return self.smooth(self.main(inputs))
return self.main(inputs)
## Dense encoders and decoders for image of size 512 512
class waspDenseEncoder512(nn.Module):
def __init__(self, nc=1, ndf = 32, ndim = 128, activation=nn.LeakyReLU, args=[0.2, False], f_activation=nn.Tanh, f_args=[]):
super(waspDenseEncoder512, self).__init__()
self.ndim = ndim
self.main = nn.Sequential(
# input is (nc) x 128 x 128 > *4
nn.BatchNorm2d(nc),
nn.ReLU(True),
nn.Conv2d(nc, ndf, 4, stride=2, padding=1),
# state size. (ndf) x 64 x 64 > *4
DenseBlockEncoder(ndf, 6),
DenseTransitionBlockEncoder(ndf, ndf*2, 2, activation=activation, args=args),
# state size. (ndf*2) x 32 x 32 > *4
DenseBlockEncoder(ndf*2, 12),
DenseTransitionBlockEncoder(ndf*2, ndf*4, 2, activation=activation, args=args),
# state size. (ndf*4) x 16 x 16 > *4
DenseBlockEncoder(ndf*4, 16),
DenseTransitionBlockEncoder(ndf*4, ndf*8, 2, activation=activation, args=args),
# state size. (ndf*8) x 8 x 8 *4
DenseBlockEncoder(ndf*8, 16),
DenseTransitionBlockEncoder(ndf*8, ndf*8, 2, activation=activation, args=args),
# state size. (ndf*8) x 4 x 4 > *4
DenseBlockEncoder(ndf*8, 16),
DenseTransitionBlockEncoder(ndf*8, ndf*8, 4, activation=activation, args=args),
f_activation(*f_args),
# state size. (ndf*8) x 2 x 2 > *4
DenseBlockEncoder(ndf*8, 16),
DenseTransitionBlockEncoder(ndf*8, ndim, 4, activation=activation, args=args),
f_activation(*f_args),
)
def forward(self, input):
input=add_coordConv_channels(input)
output = self.main(input).view(-1,self.ndim)
# output = self.main(input).view(8,-1)
# print(input.shape,'---------------------')
#print(output.size())
return output
class waspDenseDecoder512(nn.Module):
def __init__(self, nz=128, nc=1, ngf=32, lb=0, ub=1, activation=nn.ReLU, args=[False], f_activation=nn.Tanh, f_args=[]):
super(waspDenseDecoder512, self).__init__()
self.main = nn.Sequential(
# input is Z, going into convolution
nn.BatchNorm2d(nz),
activation(*args),
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
# state size. (ngf*8) x 4 x 4
DenseBlockDecoder(ngf*8, 16),
DenseTransitionBlockDecoder(ngf*8, ngf*8),
# state size. (ngf*8) x 8 x 8
DenseBlockDecoder(ngf*8, 16),
DenseTransitionBlockDecoder(ngf*8, ngf*8),
# state size. (ngf*4) x 16 x 16
DenseBlockDecoder(ngf*8, 16),
DenseTransitionBlockDecoder(ngf*8, ngf*4),
# state size. (ngf*2) x 32 x 32
DenseBlockDecoder(ngf*4, 12),
DenseTransitionBlockDecoder(ngf*4, ngf*2),
# state size. (ngf) x 64 x 64
DenseBlockDecoder(ngf*2, 6),
DenseTransitionBlockDecoder(ngf*2, ngf),
# state size. (ngf) x 128 x 128
DenseBlockDecoder(ngf, 6),
DenseTransitionBlockDecoder(ngf, ngf),
# state size. (ngf) x 256 x 256
DenseBlockDecoder(ngf, 6),
DenseTransitionBlockDecoder(ngf, ngf),
# state size (ngf) x 512 x 512
nn.BatchNorm2d(ngf),
activation(*args),
nn.ConvTranspose2d(ngf, nc, 3, stride=1, padding=1, bias=False),
f_activation(*f_args),
)
# self.smooth=nn.Sequential(
# nn.Conv2d(nc, nc, 1, stride=1, padding=0, bias=False),
# f_activation(*f_args),
# )
def forward(self, inputs):
# return self.smooth(self.main(inputs))
return self.main(inputs)
class dnetccnl(nn.Module):
#in_channels -> nc | encoder first layer
#filters -> ndf | encoder first layer
#img_size(h,w) -> ndim
#out_channels -> optical flow (x,y)
def __init__(self, img_size=448, in_channels=3, out_channels=2, filters=32,fc_units=100):
super(dnetccnl, self).__init__()
self.nc=in_channels
self.nf=filters
self.ndim=img_size
self.oc=out_channels
self.fcu=fc_units
self.encoder=waspDenseEncoder128(nc=self.nc+2,ndf=self.nf,ndim=self.ndim)
self.decoder=waspDenseDecoder128(nz=self.ndim,nc=self.oc,ngf=self.nf)
# self.fc_layers= nn.Sequential(nn.Linear(self.ndim, self.fcu),
# nn.ReLU(True),
# nn.Dropout(0.25),
# nn.Linear(self.fcu,self.ndim),
# nn.ReLU(True),
# nn.Dropout(0.25),
# )
def forward(self, inputs):
encoded=self.encoder(inputs)
encoded=encoded.unsqueeze(-1).unsqueeze(-1)
decoded=self.decoder(encoded)
# print torch.max(decoded)
# print torch.min(decoded)
# print(decoded.shape,'11111111111111111',encoded.shape)
return decoded
class dnetccnl512(nn.Module):
#in_channels -> nc | encoder first layer
#filters -> ndf | encoder first layer
#img_size(h,w) -> ndim
#out_channels -> optical flow (x,y)
def __init__(self, img_size=448, in_channels=3, out_channels=2, filters=32,fc_units=100):
super(dnetccnl512, self).__init__()
self.nc=in_channels
self.nf=filters
self.ndim=img_size
self.oc=out_channels
self.fcu=fc_units
self.encoder=waspDenseEncoder512(nc=self.nc+2,ndf=self.nf,ndim=self.ndim)
self.decoder=waspDenseDecoder512(nz=self.ndim,nc=self.oc,ngf=self.nf)
# self.fc_layers= nn.Sequential(nn.Linear(self.ndim, self.fcu),
# nn.ReLU(True),
# nn.Dropout(0.25),
# nn.Linear(self.fcu,self.ndim),
# nn.ReLU(True),
# nn.Dropout(0.25),
# )
def forward(self, inputs):
encoded=self.encoder(inputs)
encoded=encoded.unsqueeze(-1).unsqueeze(-1)
decoded=self.decoder(encoded)
# print torch.max(decoded)
# print torch.min(decoded)
# print(decoded.shape,'11111111111111111',encoded.shape)
return decoded |