Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import copy | |
import torch | |
import torch | |
import itertools | |
import torch.nn as nn | |
from torch.autograd import Function, Variable | |
def reorder(myPoints): | |
myPoints = myPoints.reshape((4, 2)) | |
myPointsNew = np.zeros((4, 1, 2), dtype=np.int32) | |
add = myPoints.sum(1) | |
myPointsNew[0] = myPoints[np.argmin(add)] | |
myPointsNew[3] =myPoints[np.argmax(add)] | |
diff = np.diff(myPoints, axis=1) | |
myPointsNew[1] =myPoints[np.argmin(diff)] | |
myPointsNew[2] = myPoints[np.argmax(diff)] | |
return myPointsNew | |
def findMiddle(corners,mask,points=[0.25,0.5,0.75]): | |
num_middle_points = len(points) | |
top = [np.array([])]*num_middle_points | |
bottom = [np.array([])]*num_middle_points | |
left = [np.array([])]*num_middle_points | |
right = [np.array([])]*num_middle_points | |
center_top = [] | |
center_bottom = [] | |
center_left = [] | |
center_right = [] | |
center = (int((corners[0][0][1]+corners[3][0][1])/2),int((corners[0][0][0]+corners[3][0][0])/2)) | |
for ratio in points: | |
center_top.append( (center[0],int(corners[0][0][0]*(1-ratio)+corners[1][0][0]*ratio)) ) | |
center_bottom.append( (center[0],int(corners[2][0][0]*(1-ratio)+corners[3][0][0]*ratio)) ) | |
center_left.append( (int(corners[0][0][1]*(1-ratio)+corners[2][0][1]*ratio),center[1]) ) | |
center_right.append( (int(corners[1][0][1]*(1-ratio)+corners[3][0][1]*ratio),center[1]) ) | |
for i in range(0,center[0],1): | |
for j in range(num_middle_points): | |
if top[j].size==0: | |
if mask[i,center_top[j][1]]==255: | |
top[j] = np.asarray([center_top[j][1],i]) | |
top[j] = top[j].reshape(1,2) | |
for i in range(mask.shape[0]-1,center[0],-1): | |
for j in range(num_middle_points): | |
if bottom[j].size==0: | |
if mask[i,center_bottom[j][1]]==255: | |
bottom[j] = np.asarray([center_bottom[j][1],i]) | |
bottom[j] = bottom[j].reshape(1,2) | |
for i in range(mask.shape[1]-1,center[1],-1): | |
for j in range(num_middle_points): | |
if right[j].size==0: | |
if mask[center_right[j][0],i]==255: | |
right[j] = np.asarray([i,center_right[j][0]]) | |
right[j] = right[j].reshape(1,2) | |
for i in range(0,center[1]): | |
for j in range(num_middle_points): | |
if left[j].size==0: | |
if mask[center_left[j][0],i]==255: | |
left[j] = np.asarray([i,center_left[j][0]]) | |
left[j] = left[j].reshape(1,2) | |
return np.asarray(top+bottom+left+right) | |
def DP_algorithmv1(contours): | |
biggest = np.array([]) | |
max_area = 0 | |
step = 0.001 | |
count = 0 | |
# while biggest.size==0: | |
while True: | |
for i in contours: | |
# print(i.shape) | |
area = cv2.contourArea(i) | |
# print(area,cv2.arcLength(i, True)) | |
if area > cv2.arcLength(i, True)*10: | |
peri = cv2.arcLength(i, True) | |
approx = cv2.approxPolyDP(i, (0.01+step*count) * peri, True) | |
if area > max_area and len(approx) == 4: | |
max_area = area | |
biggest_contours = i | |
biggest = approx | |
break | |
if abs(max_area - cv2.contourArea(biggest))/max_area > 0.3: | |
biggest = np.array([]) | |
count += 1 | |
if count > 200: | |
break | |
temp = biggest[0] | |
return biggest,max_area, biggest_contours | |
def DP_algorithm(contours): | |
biggest = np.array([]) | |
max_area = 0 | |
step = 0.001 | |
count = 0 | |
### largest contours | |
for i in contours: | |
area = cv2.contourArea(i) | |
if area > max_area: | |
max_area = area | |
biggest_contours = i | |
peri = cv2.arcLength(biggest_contours, True) | |
### find four corners | |
while True: | |
approx = cv2.approxPolyDP(biggest_contours, (0.01+step*count) * peri, True) | |
if len(approx) == 4: | |
biggest = approx | |
break | |
# if abs(max_area - cv2.contourArea(biggest))/max_area > 0.2: | |
# if abs(max_area - cv2.contourArea(biggest))/max_area > 0.4: | |
# biggest = np.array([]) | |
count += 1 | |
if count > 200: | |
break | |
return biggest,max_area, biggest_contours | |
def drawRectangle(img,biggest,color,thickness): | |
cv2.line(img, (biggest[0][0][0], biggest[0][0][1]), (biggest[1][0][0], biggest[1][0][1]), color, thickness) | |
cv2.line(img, (biggest[0][0][0], biggest[0][0][1]), (biggest[2][0][0], biggest[2][0][1]), color, thickness) | |
cv2.line(img, (biggest[3][0][0], biggest[3][0][1]), (biggest[2][0][0], biggest[2][0][1]), color, thickness) | |
cv2.line(img, (biggest[3][0][0], biggest[3][0][1]), (biggest[1][0][0], biggest[1][0][1]), color, thickness) | |
return img | |
def minAreaRect(contours,img): | |
# biggest = np.array([]) | |
max_area = 0 | |
for i in contours: | |
area = cv2.contourArea(i) | |
if area > max_area: | |
peri = cv2.arcLength(i, True) | |
rect = cv2.minAreaRect(i) | |
points = cv2.boxPoints(rect) | |
max_area = area | |
return points | |
def cropRectangle(img,biggest): | |
# print(biggest) | |
w = np.abs(biggest[0][0][0] - biggest[1][0][0]) | |
h = np.abs(biggest[0][0][1] - biggest[2][0][1]) | |
new_img = np.zeros((w,h,img.shape[-1]),dtype=np.uint8) | |
new_img = img[biggest[0][0][1]:biggest[0][0][1]+h,biggest[0][0][0]:biggest[0][0][0]+w] | |
return new_img | |
def cvimg2torch(img,min=0,max=1): | |
''' | |
input: | |
im -> ndarray uint8 HxWxC | |
return | |
tensor -> torch.tensor BxCxHxW | |
''' | |
if len(img.shape)==2: | |
img = np.expand_dims(img,axis=-1) | |
img = img.astype(float) / 255.0 | |
img = img.transpose(2, 0, 1) # NHWC -> NCHW | |
img = np.expand_dims(img, 0) | |
img = torch.from_numpy(img).float() | |
return img | |
def torch2cvimg(tensor,min=0,max=1): | |
''' | |
input: | |
tensor -> torch.tensor BxCxHxW C can be 1,3 | |
return | |
im -> ndarray uint8 HxWxC | |
''' | |
im_list = [] | |
for i in range(tensor.shape[0]): | |
im = tensor.detach().cpu().data.numpy()[i] | |
im = im.transpose(1,2,0) | |
im = np.clip(im,min,max) | |
im = ((im-min)/(max-min)*255).astype(np.uint8) | |
im_list.append(im) | |
return im_list | |
class TPSGridGen(nn.Module): | |
def __init__(self, target_height, target_width, target_control_points): | |
''' | |
target_control_points -> torch.tensor num_pointx2 -1~1 | |
source_control_points -> torch.tensor batch_size x num_point x 2 -1~1 | |
return: | |
grid -> batch_size x hw x 2 -1~1 | |
''' | |
super(TPSGridGen, self).__init__() | |
assert target_control_points.ndimension() == 2 | |
assert target_control_points.size(1) == 2 | |
N = target_control_points.size(0) | |
self.num_points = N | |
target_control_points = target_control_points.float() | |
# create padded kernel matrix | |
forward_kernel = torch.zeros(N + 3, N + 3) | |
target_control_partial_repr = self.compute_partial_repr(target_control_points, target_control_points) | |
forward_kernel[:N, :N].copy_(target_control_partial_repr) | |
forward_kernel[:N, -3].fill_(1) | |
forward_kernel[-3, :N].fill_(1) | |
forward_kernel[:N, -2:].copy_(target_control_points) | |
forward_kernel[-2:, :N].copy_(target_control_points.transpose(0, 1)) | |
# compute inverse matrix | |
inverse_kernel = torch.inverse(forward_kernel) | |
# create target cordinate matrix | |
HW = target_height * target_width | |
target_coordinate = list(itertools.product(range(target_height), range(target_width))) | |
target_coordinate = torch.Tensor(target_coordinate) # HW x 2 | |
Y, X = target_coordinate.split(1, dim = 1) | |
Y = Y * 2 / (target_height - 1) - 1 | |
X = X * 2 / (target_width - 1) - 1 | |
target_coordinate = torch.cat([X, Y], dim = 1) # convert from (y, x) to (x, y) | |
target_coordinate_partial_repr = self.compute_partial_repr(target_coordinate.to(target_control_points.device), target_control_points) | |
target_coordinate_repr = torch.cat([ | |
target_coordinate_partial_repr, torch.ones(HW, 1), target_coordinate | |
], dim = 1) | |
# register precomputed matrices | |
self.register_buffer('inverse_kernel', inverse_kernel) | |
self.register_buffer('padding_matrix', torch.zeros(3, 2)) | |
self.register_buffer('target_coordinate_repr', target_coordinate_repr) | |
def forward(self, source_control_points): | |
assert source_control_points.ndimension() == 3 | |
assert source_control_points.size(1) == self.num_points | |
assert source_control_points.size(2) == 2 | |
batch_size = source_control_points.size(0) | |
Y = torch.cat([source_control_points, Variable(self.padding_matrix.expand(batch_size, 3, 2))], 1) | |
mapping_matrix = torch.matmul(Variable(self.inverse_kernel), Y) | |
source_coordinate = torch.matmul(Variable(self.target_coordinate_repr), mapping_matrix) | |
return source_coordinate | |
# phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2 | |
def compute_partial_repr(self, input_points, control_points): | |
N = input_points.size(0) | |
M = control_points.size(0) | |
pairwise_diff = input_points.view(N, 1, 2) - control_points.view(1, M, 2) | |
# original implementation, very slow | |
# pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance | |
pairwise_diff_square = pairwise_diff * pairwise_diff | |
pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :, 1] | |
repr_matrix = 0.5 * pairwise_dist * torch.log(pairwise_dist) | |
# fix numerical error for 0 * log(0), substitute all nan with 0 | |
mask = repr_matrix != repr_matrix | |
repr_matrix.masked_fill_(mask, 0) | |
return repr_matrix | |
### deside wheather further process | |
# point_area = cv2.contourArea(np.concatenate((biggest_angle[0].reshape(1,1,2),middle[0:3],biggest_angle[1].reshape(1,1,2),middle[9:12],biggest_angle[3].reshape(1,1,2),middle[3:6][::-1],biggest_angle[2].reshape(1,1,2),middle[6:9][::-1]),axis=0)) | |
#### 最小外接矩形 | |
# rect = cv2.minAreaRect(contour) # 得到最小外接矩形的(中心(x,y), (宽,高), 旋转角度) | |
# box = cv2.boxPoints(rect) # cv2.boxPoints(rect) for OpenCV 3.x 获取最小外接矩形的4个顶点坐标 | |
# box = np.int0(box) | |
# box = box.reshape((4,1,2)) | |
# minrect_area = cv2.contourArea(box) | |
# print(abs(minrect_area-point_area)/point_area) | |
#### 四个角点 IOU | |
# biggest_box = np.concatenate((biggest_angle[0,:,:].reshape(1,1,2),biggest_angle[2,:,:].reshape(1,1,2),biggest_angle[3,:,:].reshape(1,1,2),biggest_angle[1,:,:].reshape(1,1,2)),axis=0) | |
# biggest_mask = np.zeros_like(mask) | |
# # corner_area = cv2.contourArea(biggest_box) | |
# cv2.drawContours(biggest_mask,[biggest_box], -1, color=255, thickness=-1) | |
# smooth = 1e-5 | |
# biggest_mask_ = biggest_mask > 50 | |
# mask_ = mask > 50 | |
# intersection = (biggest_mask_ & mask_).sum() | |
# union = (biggest_mask_ | mask_).sum() | |
# iou = (intersection + smooth) / (union + smooth) | |
# if iou > 0.975: | |
# skip = True | |
# else: | |
# skip = False | |
# print(iou) | |
# cv2.imshow('mask',cv2.resize(mask,(512,512))) | |
# cv2.imshow('biggest_mask',cv2.resize(biggest_mask,(512,512))) | |
# cv2.waitKey(0) | |