|
import torch |
|
import torch.nn as nn |
|
from torch.nn import init |
|
import functools |
|
|
|
|
|
|
|
|
|
|
|
class UnetGenerator(nn.Module): |
|
def __init__(self, input_nc, output_nc, num_downs, ngf=64, |
|
norm_layer=nn.BatchNorm2d, use_dropout=False): |
|
super(UnetGenerator, self).__init__() |
|
|
|
|
|
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) |
|
for i in range(num_downs - 5): |
|
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) |
|
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) |
|
|
|
self.model = unet_block |
|
|
|
def forward(self, input): |
|
return self.model(input) |
|
|
|
|
|
def forward(self, input): |
|
return self.model(input) |
|
|
|
|
|
|
|
|
|
class UnetSkipConnectionBlock(nn.Module): |
|
def __init__(self, outer_nc, inner_nc, input_nc=None, |
|
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): |
|
super(UnetSkipConnectionBlock, self).__init__() |
|
self.outermost = outermost |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
if input_nc is None: |
|
input_nc = outer_nc |
|
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, |
|
stride=2, padding=1, bias=use_bias) |
|
downrelu = nn.LeakyReLU(0.2, True) |
|
downnorm = norm_layer(inner_nc) |
|
uprelu = nn.ReLU(True) |
|
upnorm = norm_layer(outer_nc) |
|
|
|
if outermost: |
|
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1) |
|
down = [downconv] |
|
up = [uprelu, upconv, nn.Tanh()] |
|
model = down + [submodule] + up |
|
elif innermost: |
|
upconv = nn.ConvTranspose2d(inner_nc, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias) |
|
down = [downrelu, downconv] |
|
up = [uprelu, upconv, upnorm] |
|
model = down + up |
|
else: |
|
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias) |
|
down = [downrelu, downconv, downnorm] |
|
up = [uprelu, upconv, upnorm] |
|
|
|
if use_dropout: |
|
model = down + [submodule] + up + [nn.Dropout(0.5)] |
|
else: |
|
model = down + [submodule] + up |
|
|
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, x): |
|
if self.outermost: |
|
return self.model(x) |
|
else: |
|
return torch.cat([x, self.model(x)], 1) |
|
|