qubvel-hf's picture
qubvel-hf HF staff
Init project
c509e76
'''
Misc Utility functions
'''
from collections import OrderedDict
import os
import numpy as np
import torch
import random
import torchvision
def recursive_glob(rootdir='.', suffix=''):
"""Performs recursive glob with given suffix and rootdir
:param rootdir is the root directory
:param suffix is the suffix to be searched
"""
return [os.path.join(looproot, filename)
for looproot, _, filenames in os.walk(rootdir)
for filename in filenames if filename.endswith(suffix)]
def poly_lr_scheduler(optimizer, init_lr, iter, lr_decay_iter=1, max_iter=30000, power=0.9,):
"""Polynomial decay of learning rate
:param init_lr is base learning rate
:param iter is a current iteration
:param lr_decay_iter how frequently decay occurs, default is 1
:param max_iter is number of maximum iterations
:param power is a polymomial power
"""
if iter % lr_decay_iter or iter > max_iter:
return optimizer
for param_group in optimizer.param_groups:
param_group['lr'] = init_lr*(1 - iter/max_iter)**power
def adjust_learning_rate(optimizer, init_lr, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = init_lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def alpha_blend(input_image, segmentation_mask, alpha=0.5):
"""Alpha Blending utility to overlay RGB masks on RBG images
:param input_image is a np.ndarray with 3 channels
:param segmentation_mask is a np.ndarray with 3 channels
:param alpha is a float value
"""
blended = np.zeros(input_image.size, dtype=np.float32)
blended = input_image * alpha + segmentation_mask * (1 - alpha)
return blended
def convert_state_dict(state_dict):
"""Converts a state dict saved from a dataParallel module to normal
module state_dict inplace
:param state_dict is the loaded DataParallel model_state
"""
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
return new_state_dict
class ImagePool():
def __init__(self, pool_size):
self.pool_size = pool_size
if self.pool_size > 0:
self.num_imgs = 0
self.images = []
def query(self, images):
if self.pool_size == 0:
return images
return_images = []
for image in images:
image = torch.unsqueeze(image.data, 0)
if self.num_imgs < self.pool_size:
self.num_imgs = self.num_imgs + 1
self.images.append(image)
return_images.append(image)
else:
p = random.uniform(0, 1)
if p > 0.5:
random_id = random.randint(0, self.pool_size - 1) # randint is inclusive
tmp = self.images[random_id].clone()
self.images[random_id] = image
return_images.append(tmp)
else:
return_images.append(image)
return_images = torch.cat(return_images, 0)
return return_images
def set_requires_grad(nets, requires_grad=False):
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return float(param_group['lr'])
def visualize(epoch,model,layer):
#get conv layers
conv_layers=[]
for m in model.modules():
if isinstance(m,torch.nn.modules.conv.Conv2d):
conv_layers.append(m)
# print conv_layers[layer].weight.data.cpu().numpy().shape
tensor=conv_layers[layer].weight.data.cpu()
vistensor(tensor, epoch, ch=0, allkernels=False, nrow=8, padding=1)
def vistensor(tensor, epoch, ch=0, allkernels=False, nrow=8, padding=1):
'''
vistensor: visuzlization tensor
@ch: visualization channel
@allkernels: visualization all tensors
https://github.com/pedrodiamel/pytorchvision/blob/a14672fe4b07995e99f8af755de875daf8aababb/pytvision/visualization.py#L325
'''
n,c,w,h = tensor.shape
if allkernels: tensor = tensor.view(n*c,-1,w,h )
elif c != 3: tensor = tensor[:,ch,:,:].unsqueeze(dim=1)
rows = np.min( (tensor.shape[0]//nrow + 1, 64 ) )
# print rows
# print tensor.shape
grid = utils.make_grid(tensor, nrow=8, normalize=True, padding=padding)
# print grid.shape
plt.figure( figsize=(10,10), dpi=200 )
plt.imshow(grid.numpy().transpose((1, 2, 0)))
plt.savefig('./generated/filters_layer1_dwuv_'+str(epoch)+'.png')
plt.close()
def show_uloss(uwpred,uworg,inp_img, samples=7):
n,c,h,w=inp_img.shape
# print(labels.shape)
uwpred=uwpred.detach().cpu().numpy()
uworg=uworg.detach().cpu().numpy()
inp_img=inp_img.detach().cpu().numpy()
#NCHW->NHWC
uwpred=uwpred.transpose((0, 2, 3, 1))
uworg=uworg.transpose((0, 2, 3, 1))
choices=random.sample(range(n), min(n,samples))
f, axarr = plt.subplots(samples, 3)
for j in range(samples):
# print(np.min(labels[j]))
# print imgs[j].shape
img=inp_img[j].transpose(1,2,0)
axarr[j][0].imshow(img[:,:,::-1])
axarr[j][1].imshow(uworg[j])
axarr[j][2].imshow(uwpred[j])
plt.savefig('./generated/unwarp.png')
plt.close()
def show_uloss_visdom(vis,uwpred,uworg,labels_win,out_win,labelopts,outopts,args):
samples=7
n,c,h,w=uwpred.shape
uwpred=uwpred.detach().cpu().numpy()
uworg=uworg.detach().cpu().numpy()
out_arr=np.full((samples,3,args.img_rows,args.img_cols),0.0)
label_arr=np.full((samples,3,args.img_rows,args.img_cols),0.0)
choices=random.sample(range(n), min(n,samples))
idx=0
for c in choices:
out_arr[idx,:,:,:]=uwpred[c]
label_arr[idx,:,:,:]=uworg[c]
idx+=1
vis.images(out_arr,
win=out_win,
opts=outopts)
vis.images(label_arr,
win=labels_win,
opts=labelopts)
def show_unwarp_tnsboard(global_step,writer,uwpred,uworg,grid_samples,gt_tag,pred_tag):
idxs=torch.LongTensor(random.sample(range(images.shape[0]), min(grid_samples,images.shape[0])))
grid_uworg = torchvision.utils.make_grid(uworg[idxs],normalize=True, scale_each=True)
writer.add_image(gt_tag, grid_uworg, global_step)
grid_uwpr = torchvision.utils.make_grid(uwpred[idxs],normalize=True, scale_each=True)
writer.add_image(pred_tag, grid_uwpr, global_step)
def show_wc_tnsboard(global_step,writer,images,labels, pred, grid_samples,inp_tag, gt_tag, pred_tag):
idxs=torch.LongTensor(random.sample(range(images.shape[0]), min(grid_samples,images.shape[0])))
grid_inp = torchvision.utils.make_grid(images[idxs],normalize=True, scale_each=True)
writer.add_image(inp_tag, grid_inp, global_step)
grid_lbl = torchvision.utils.make_grid(labels[idxs],normalize=True, scale_each=True)
writer.add_image(gt_tag, grid_lbl, global_step)
grid_pred = torchvision.utils.make_grid(pred[idxs],normalize=True, scale_each=True)
writer.add_image(pred_tag, grid_pred, global_step)
def torch2cvimg(tensor,min=0,max=1):
'''
input:
tensor -> torch.tensor BxCxHxW C can be 1,3
return
im -> ndarray uint8 HxWxC
'''
im_list = []
for i in range(tensor.shape[0]):
im = tensor.detach().cpu().data.numpy()[i]
im = im.transpose(1,2,0)
im = np.clip(im,min,max)
im = ((im-min)/(max-min)*255).astype(np.uint8)
im_list.append(im)
return im_list
def cvimg2torch(img,min=0,max=1):
'''
input:
im -> ndarray uint8 HxWxC
return
tensor -> torch.tensor BxCxHxW
'''
img = img.astype(float) / 255.0
img = img.transpose(2, 0, 1) # NHWC -> NCHW
img = np.expand_dims(img, 0)
img = torch.from_numpy(img).float()
return img