Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MAX_MAX_NEW_TOKENS = 1024 | |
DEFAULT_MAX_NEW_TOKENS = 256 | |
MAX_INPUT_TOKEN_LENGTH = 512 | |
DESCRIPTION = """\ | |
# OpenELM-3B-Instruct | |
This Space demonstrates [OpenELM-3B-Instruct](https://huggingface.co/apple/OpenELM-3B-Instruct) by Apple. Please, check the original model card for details. | |
You can see the other models of the OpenELM family [here](https://huggingface.co/apple/OpenELM) | |
The following Colab notebooks are available: | |
* [OpenELM-3B-Instruct (GPU)](https://gist.github.com/Norod/4f11bb36bea5c548d18f10f9d7ec09b0) | |
* [OpenELM-270M (CPU)](https://gist.github.com/Norod/5a311a8e0a774b5c35919913545b7af4) | |
You might also be interested in checking out Apple's [CoreNet Github page](https://github.com/apple/corenet?tab=readme-ov-file). | |
# Note: Use this model only for completing sentences and instruction following. | |
If you duplicate this space, make sure that: | |
1. You have access to [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) because this model uses it as a tokenizer. | |
2. You have set a HF_TOKEN secret with a "read" token so this space could access Llama-2-7b-hf on your behalf | |
""" | |
LICENSE = """ | |
<p/> | |
--- | |
As a derivative work of [OpenELM-3B-Instruct](https://huggingface.co/apple/OpenELM-3B-Instruct) by Apple, | |
this demo is governed by the original [license](https://huggingface.co/apple/OpenELM-3B-Instruct/blob/main/LICENSE). | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
if torch.cuda.is_available(): | |
model_id = "apple/OpenELM-3B-Instruct" | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, low_cpu_mem_usage=True) | |
tokenizer_id = "meta-llama/Llama-2-7b-hf" | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) | |
if tokenizer.pad_token == None: | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
model.config.pad_token_id = tokenizer.eos_token_id | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.4, | |
) -> Iterator[str]: | |
historical_text = "" | |
#Prepend the entire chat history to the message with new lines between each message | |
for user, assistant in chat_history: | |
historical_text += f"\n{user}\n{assistant}" | |
if len(historical_text) > 0: | |
message = historical_text + f"\n{message}" | |
input_ids = tokenizer([message], return_tensors="pt").input_ids | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
pad_token_id = tokenizer.eos_token_id, | |
repetition_penalty=repetition_penalty, | |
no_repeat_ngram_size=5, | |
early_stopping=False, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.6, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.4, | |
), | |
], | |
stop_btn=None, | |
examples=[ | |
["A recipe for a chocolate cake:"], | |
["Can you explain briefly to me what is the Python programming language?"], | |
["Once upon a time there was a little"], | |
["Question: What is the capital of France?\nAnswer:"], | |
["Question: I am very tired, what should I do?\nAnswer:"], | |
], | |
) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
chat_interface.render() | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |