File size: 12,124 Bytes
c553f8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
"""Training code for the detector model"""

import argparse
import os
import subprocess
import sys
from itertools import count
from multiprocessing import Process

import torch
import torch.distributed as dist
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.optim import Adam
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler
from tqdm import tqdm
from transformers import *

from .dataset import Corpus, EncodedDataset
from .download import download
from .utils import summary, distributed


def setup_distributed(port=29500):
    if not dist.is_available() or not torch.cuda.is_available() or torch.cuda.device_count() <= 1:
        return 0, 1

    if 'MPIR_CVAR_CH3_INTERFACE_HOSTNAME' in os.environ:
        from mpi4py import MPI
        mpi_rank = MPI.COMM_WORLD.Get_rank()
        mpi_size = MPI.COMM_WORLD.Get_size()

        os.environ["MASTER_ADDR"] = '127.0.0.1'
        os.environ["MASTER_PORT"] = str(port)

        dist.init_process_group(backend="nccl", world_size=mpi_size, rank=mpi_rank)
        return mpi_rank, mpi_size

    dist.init_process_group(backend="nccl", init_method="env://")
    return dist.get_rank(), dist.get_world_size()


def load_datasets(data_dir, real_dataset, fake_dataset, tokenizer, batch_size,
                  max_sequence_length, random_sequence_length, epoch_size=None, token_dropout=None, seed=None):
    if fake_dataset == 'TWO':
        download(real_dataset, 'xl-1542M', 'xl-1542M-nucleus', data_dir=data_dir)
    elif fake_dataset == 'THREE':
        download(real_dataset, 'xl-1542M', 'xl-1542M-k40', 'xl-1542M-nucleus', data_dir=data_dir)
    else:
        download(real_dataset, fake_dataset, data_dir=data_dir)

    real_corpus = Corpus(real_dataset, data_dir=data_dir)

    if fake_dataset == "TWO":
        real_train, real_valid = real_corpus.train * 2, real_corpus.valid * 2
        fake_corpora = [Corpus(name, data_dir=data_dir) for name in ['xl-1542M', 'xl-1542M-nucleus']]
        fake_train = sum([corpus.train for corpus in fake_corpora], [])
        fake_valid = sum([corpus.valid for corpus in fake_corpora], [])
    elif fake_dataset == "THREE":
        real_train, real_valid = real_corpus.train * 3, real_corpus.valid * 3
        fake_corpora = [Corpus(name, data_dir=data_dir) for name in
                        ['xl-1542M', 'xl-1542M-k40', 'xl-1542M-nucleus']]
        fake_train = sum([corpus.train for corpus in fake_corpora], [])
        fake_valid = sum([corpus.valid for corpus in fake_corpora], [])
    else:
        fake_corpus = Corpus(fake_dataset, data_dir=data_dir)

        real_train, real_valid = real_corpus.train, real_corpus.valid
        fake_train, fake_valid = fake_corpus.train, fake_corpus.valid

    Sampler = DistributedSampler if distributed() and dist.get_world_size() > 1 else RandomSampler

    min_sequence_length = 10 if random_sequence_length else None
    train_dataset = EncodedDataset(real_train, fake_train, tokenizer, max_sequence_length, min_sequence_length,
                                   epoch_size, token_dropout, seed)
    train_loader = DataLoader(train_dataset, batch_size, sampler=Sampler(train_dataset), num_workers=0)

    validation_dataset = EncodedDataset(real_valid, fake_valid, tokenizer)
    validation_loader = DataLoader(validation_dataset, batch_size=1, sampler=Sampler(validation_dataset))

    return train_loader, validation_loader


def accuracy_sum(logits, labels):
    if list(logits.shape) == list(labels.shape) + [2]:
        # 2-d outputs
        classification = (logits[..., 0] < logits[..., 1]).long().flatten()
    else:
        classification = (logits > 0).long().flatten()
    assert classification.shape == labels.shape
    return (classification == labels).float().sum().item()


def train(model: nn.Module, optimizer, device: str, loader: DataLoader, desc='Train'):
    model.train()

    train_accuracy = 0
    train_epoch_size = 0
    train_loss = 0

    with tqdm(loader, desc=desc, disable=distributed() and dist.get_rank() > 0) as loop:
        for texts, masks, labels in loop:

            texts, masks, labels = texts.to(device), masks.to(device), labels.to(device)
            batch_size = texts.shape[0]

            optimizer.zero_grad()
            loss, logits = model(texts, attention_mask=masks, labels=labels)
            loss.backward()
            optimizer.step()

            batch_accuracy = accuracy_sum(logits, labels)
            train_accuracy += batch_accuracy
            train_epoch_size += batch_size
            train_loss += loss.item() * batch_size

            loop.set_postfix(loss=loss.item(), acc=train_accuracy / train_epoch_size)

    return {
        "train/accuracy": train_accuracy,
        "train/epoch_size": train_epoch_size,
        "train/loss": train_loss
    }


def validate(model: nn.Module, device: str, loader: DataLoader, votes=1, desc='Validation'):
    model.eval()

    validation_accuracy = 0
    validation_epoch_size = 0
    validation_loss = 0

    records = [record for v in range(votes) for record in tqdm(loader, desc=f'Preloading data ... {v}',
                                                               disable=dist.is_available() and dist.get_rank() > 0)]
    records = [[records[v * len(loader) + i] for v in range(votes)] for i in range(len(loader))]

    with tqdm(records, desc=desc, disable=distributed() and dist.get_rank() > 0) as loop, torch.no_grad():
        for example in loop:
            losses = []
            logit_votes = []

            for texts, masks, labels in example:
                texts, masks, labels = texts.to(device), masks.to(device), labels.to(device)
                batch_size = texts.shape[0]

                loss, logits = model(texts, attention_mask=masks, labels=labels)
                losses.append(loss)
                logit_votes.append(logits)

            loss = torch.stack(losses).mean(dim=0)
            logits = torch.stack(logit_votes).mean(dim=0)

            batch_accuracy = accuracy_sum(logits, labels)
            validation_accuracy += batch_accuracy
            validation_epoch_size += batch_size
            validation_loss += loss.item() * batch_size

            loop.set_postfix(loss=loss.item(), acc=validation_accuracy / validation_epoch_size)

    return {
        "validation/accuracy": validation_accuracy,
        "validation/epoch_size": validation_epoch_size,
        "validation/loss": validation_loss
    }


def _all_reduce_dict(d, device):
    # wrap in tensor and use reduce to gpu0 tensor
    output_d = {}
    for (key, value) in sorted(d.items()):
        tensor_input = torch.tensor([[value]]).to(device)
        torch.distributed.all_reduce(tensor_input)
        output_d[key] = tensor_input.item()
    return output_d


def run(max_epochs=None,
        device=None,
        batch_size=24,
        max_sequence_length=128,
        random_sequence_length=False,
        epoch_size=None,
        seed=None,
        data_dir='data',
        real_dataset='webtext',
        fake_dataset='xl-1542M-nucleus',
        token_dropout=None,
        large=False,
        learning_rate=2e-5,
        weight_decay=0,
        **kwargs):
    args = locals()
    rank, world_size = setup_distributed()

    if device is None:
        device = f'cuda:{rank}' if torch.cuda.is_available() else 'cpu'

    print('rank:', rank, 'world_size:', world_size, 'device:', device)

    import torch.distributed as dist
    if distributed() and rank > 0:
        dist.barrier()

    model_name = 'roberta-large' if large else 'roberta-base'
    tokenization_utils.logger.setLevel('ERROR')
    tokenizer = RobertaTokenizer.from_pretrained(model_name)
    model = RobertaForSequenceClassification.from_pretrained(model_name).to(device)

    if rank == 0:
        summary(model)
        if distributed():
            dist.barrier()

    if world_size > 1:
        model = DistributedDataParallel(model, [rank], output_device=rank, find_unused_parameters=True)

    train_loader, validation_loader = load_datasets(data_dir, real_dataset, fake_dataset, tokenizer, batch_size,
                                                    max_sequence_length, random_sequence_length, epoch_size,
                                                    token_dropout, seed)

    optimizer = Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
    epoch_loop = count(1) if max_epochs is None else range(1, max_epochs + 1)

    logdir = os.environ.get("OPENAI_LOGDIR", "logs")
    os.makedirs(logdir, exist_ok=True)

    from torch.utils.tensorboard import SummaryWriter
    writer = SummaryWriter(logdir) if rank == 0 else None
    best_validation_accuracy = 0

    for epoch in epoch_loop:
        if world_size > 1:
            train_loader.sampler.set_epoch(epoch)
            validation_loader.sampler.set_epoch(epoch)

        train_metrics = train(model, optimizer, device, train_loader, f'Epoch {epoch}')
        validation_metrics = validate(model, device, validation_loader)

        combined_metrics = _all_reduce_dict({**validation_metrics, **train_metrics}, device)

        combined_metrics["train/accuracy"] /= combined_metrics["train/epoch_size"]
        combined_metrics["train/loss"] /= combined_metrics["train/epoch_size"]
        combined_metrics["validation/accuracy"] /= combined_metrics["validation/epoch_size"]
        combined_metrics["validation/loss"] /= combined_metrics["validation/epoch_size"]

        if rank == 0:
            for key, value in combined_metrics.items():
                writer.add_scalar(key, value, global_step=epoch)

            if combined_metrics["validation/accuracy"] > best_validation_accuracy:
                best_validation_accuracy = combined_metrics["validation/accuracy"]

                model_to_save = model.module if hasattr(model, 'module') else model
                torch.save(dict(
                        epoch=epoch,
                        model_state_dict=model_to_save.state_dict(),
                        optimizer_state_dict=optimizer.state_dict(),
                        args=args
                    ),
                    os.path.join(logdir, "best-model.pt")
                )


if __name__ == '__main__':
    parser = argparse.ArgumentParser()

    parser.add_argument('--max-epochs', type=int, default=None)
    parser.add_argument('--device', type=str, default=None)
    parser.add_argument('--batch-size', type=int, default=24)
    parser.add_argument('--max-sequence-length', type=int, default=128)
    parser.add_argument('--random-sequence-length', action='store_true')
    parser.add_argument('--epoch-size', type=int, default=None)
    parser.add_argument('--seed', type=int, default=None)
    parser.add_argument('--data-dir', type=str, default='data')
    parser.add_argument('--real-dataset', type=str, default='webtext')
    parser.add_argument('--fake-dataset', type=str, default='xl-1542M-k40')
    parser.add_argument('--token-dropout', type=float, default=None)

    parser.add_argument('--large', action='store_true', help='use the roberta-large model instead of roberta-base')
    parser.add_argument('--learning-rate', type=float, default=2e-5)
    parser.add_argument('--weight-decay', type=float, default=0)
    args = parser.parse_args()

    nproc = int(subprocess.check_output([sys.executable, '-c', "import torch;"
                                         "print(torch.cuda.device_count() if torch.cuda.is_available() else 1)"]))
    if nproc > 1:
        print(f'Launching {nproc} processes ...', file=sys.stderr)

        os.environ["MASTER_ADDR"] = '127.0.0.1'
        os.environ["MASTER_PORT"] = str(29500)
        os.environ['WORLD_SIZE'] = str(nproc)
        os.environ['OMP_NUM_THREAD'] = str(1)
        subprocesses = []

        for i in range(nproc):
            os.environ['RANK'] = str(i)
            os.environ['LOCAL_RANK'] = str(i)
            process = Process(target=run, kwargs=vars(args))
            process.start()
            subprocesses.append(process)

        for process in subprocesses:
            process.join()
    else:
        run(**vars(args))