Spaces:
Running
Running
added tab with voice input.
Browse files
app.py
CHANGED
@@ -1,57 +1,114 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
|
6 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
7 |
-
|
|
|
|
|
|
|
8 |
print("Device:", device)
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
pipe_translate = pipeline("translation", model="Helsinki-NLP/opus-mt-fr-en", device=device)
|
11 |
pipe_tts = pipeline("text-to-speech", model="facebook/mms-tts-eng", device=device) # Better quality, way faster than bark
|
12 |
|
|
|
13 |
def get_translation(text):
|
14 |
return pipe_translate(text)[0]["translation_text"]
|
15 |
|
|
|
|
|
|
|
16 |
def get_audio(text):
|
17 |
speech = pipe_tts(text)
|
18 |
return speech["sampling_rate"], (speech["audio"]* 32767).astype(np.int16).T
|
19 |
|
20 |
with gr.Blocks() as demo:
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
|
6 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
7 |
+
|
8 |
+
device = "cpu"
|
9 |
+
torch_dtype = torch.float16 if device != "cpu" else torch.float32
|
10 |
+
|
11 |
print("Device:", device)
|
12 |
|
13 |
+
model_id = "openai/whisper-large-v3"
|
14 |
+
|
15 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
16 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
17 |
+
)
|
18 |
+
model.to(device)
|
19 |
+
|
20 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
21 |
+
|
22 |
+
pipe_transcription = pipeline(
|
23 |
+
"automatic-speech-recognition",
|
24 |
+
model=model,
|
25 |
+
tokenizer=processor.tokenizer,
|
26 |
+
feature_extractor=processor.feature_extractor,
|
27 |
+
max_new_tokens=128,
|
28 |
+
chunk_length_s=30,
|
29 |
+
batch_size=16,
|
30 |
+
return_timestamps=True,
|
31 |
+
torch_dtype=torch_dtype,
|
32 |
+
device=device,
|
33 |
+
)
|
34 |
pipe_translate = pipeline("translation", model="Helsinki-NLP/opus-mt-fr-en", device=device)
|
35 |
pipe_tts = pipeline("text-to-speech", model="facebook/mms-tts-eng", device=device) # Better quality, way faster than bark
|
36 |
|
37 |
+
|
38 |
def get_translation(text):
|
39 |
return pipe_translate(text)[0]["translation_text"]
|
40 |
|
41 |
+
def get_transcript(voice):
|
42 |
+
return pipe_transcription(voice, generate_kwargs={"task": "translate", "language": "french"})["text"]
|
43 |
+
|
44 |
def get_audio(text):
|
45 |
speech = pipe_tts(text)
|
46 |
return speech["sampling_rate"], (speech["audio"]* 32767).astype(np.int16).T
|
47 |
|
48 |
with gr.Blocks() as demo:
|
49 |
+
with gr.Tab("Voix (plus lent)"):
|
50 |
+
voice = gr.Audio(sources=["microphone"], type="filepath")
|
51 |
+
|
52 |
+
translation_button = gr.Button("Traduire votre enregistrement !")
|
53 |
+
output_text = gr.Textbox(
|
54 |
+
label="Texte traduit",
|
55 |
+
info="Votre texte",
|
56 |
+
lines=3,
|
57 |
+
placeholder="Votre traduction",
|
58 |
+
)
|
59 |
+
|
60 |
+
speech_button = gr.Button("Générer audio !")
|
61 |
+
|
62 |
+
translation_button.click(
|
63 |
+
get_transcript,
|
64 |
+
inputs=[
|
65 |
+
voice
|
66 |
+
],
|
67 |
+
outputs=[
|
68 |
+
output_text
|
69 |
+
],
|
70 |
+
)
|
71 |
+
speech_button.click(
|
72 |
+
get_audio,
|
73 |
+
inputs=[
|
74 |
+
output_text
|
75 |
+
],
|
76 |
+
outputs=[
|
77 |
+
gr.Audio(label="Output")
|
78 |
+
],
|
79 |
+
)
|
80 |
+
with gr.Tab("Texte (rapide)"):
|
81 |
+
input_text = gr.Textbox(
|
82 |
+
label="Input text",
|
83 |
+
info="Your text",
|
84 |
+
lines=3,
|
85 |
+
placeholder="Écrire le texte à traduire",
|
86 |
+
)
|
87 |
+
translation_button = gr.Button("Traduire...")
|
88 |
+
output_text = gr.Textbox(
|
89 |
+
label="Output text",
|
90 |
+
info="Your text",
|
91 |
+
lines=3,
|
92 |
+
placeholder="Votre traduction",
|
93 |
+
)
|
94 |
+
speech_button = gr.Button("Générer audio...")
|
95 |
+
translation_button.click(
|
96 |
+
get_translation,
|
97 |
+
inputs=[
|
98 |
+
input_text
|
99 |
+
],
|
100 |
+
outputs=[
|
101 |
+
output_text
|
102 |
+
],
|
103 |
+
)
|
104 |
+
speech_button.click(
|
105 |
+
get_audio,
|
106 |
+
inputs=[
|
107 |
+
output_text
|
108 |
+
],
|
109 |
+
outputs=[
|
110 |
+
gr.Audio(label="Output")
|
111 |
+
],
|
112 |
+
)
|
113 |
|
114 |
demo.launch()
|