Spaces:
Sleeping
Sleeping
Duplicate from ryparmar/fashion-aggregator
Browse filesCo-authored-by: Martin Rypar <[email protected]>
- .gitattributes +34 -0
- README.md +13 -0
- app.py +216 -0
- requirements.txt +4 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Fashion Aggregator
|
3 |
+
emoji: ๐
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.9
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: ryparmar/fashion-aggregator
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Provide a text query describing what you are looking for and get back out images with links!"""
|
2 |
+
import argparse
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import wandb
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
import zipfile
|
9 |
+
import pickle
|
10 |
+
from pathlib import Path
|
11 |
+
from typing import List, Any, Dict
|
12 |
+
from PIL import Image
|
13 |
+
from pathlib import Path
|
14 |
+
|
15 |
+
from transformers import AutoTokenizer
|
16 |
+
from sentence_transformers import SentenceTransformer, util
|
17 |
+
from multilingual_clip import pt_multilingual_clip
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from pathlib import Path
|
21 |
+
from typing import Callable, Dict, List, Tuple
|
22 |
+
from PIL.Image import Image
|
23 |
+
|
24 |
+
print(__file__)
|
25 |
+
|
26 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "" # do not use GPU
|
27 |
+
|
28 |
+
logging.basicConfig(level=logging.INFO)
|
29 |
+
DEFAULT_APPLICATION_NAME = "fashion-aggregator"
|
30 |
+
|
31 |
+
APP_DIR = Path(__file__).resolve().parent # what is the directory for this application?
|
32 |
+
FAVICON = APP_DIR / "t-shirt_1f455.png" # path to a small image for display in browser tab and social media
|
33 |
+
README = APP_DIR / "README.md" # path to an app readme file in HTML/markdown
|
34 |
+
|
35 |
+
DEFAULT_PORT = 11700
|
36 |
+
|
37 |
+
EMBEDDINGS_DIR = "artifacts/img-embeddings"
|
38 |
+
EMBEDDINGS_FILE = os.path.join(EMBEDDINGS_DIR, "embeddings.pkl")
|
39 |
+
RAW_PHOTOS_DIR = "artifacts/raw-photos"
|
40 |
+
|
41 |
+
# Download image embeddings and raw photos
|
42 |
+
wandb.login(key="4b5a23a662b20fdd61f2aeb5032cf56fdce278a4") # os.getenv('wandb')
|
43 |
+
api = wandb.Api()
|
44 |
+
artifact_embeddings = api.artifact("ryparmar/fashion-aggregator/unimoda-images:v1")
|
45 |
+
artifact_embeddings.download(EMBEDDINGS_DIR)
|
46 |
+
artifact_raw_photos = api.artifact("ryparmar/fashion-aggregator/unimoda-raw-images:v1")
|
47 |
+
artifact_raw_photos.download("artifacts")
|
48 |
+
|
49 |
+
with zipfile.ZipFile("artifacts/unimoda.zip", 'r') as zip_ref:
|
50 |
+
zip_ref.extractall(RAW_PHOTOS_DIR)
|
51 |
+
|
52 |
+
|
53 |
+
class TextEncoder:
|
54 |
+
"""Encodes the given text"""
|
55 |
+
|
56 |
+
def __init__(self, model_path="M-CLIP/XLM-Roberta-Large-Vit-B-32"):
|
57 |
+
self.model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_path)
|
58 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
59 |
+
|
60 |
+
@torch.no_grad()
|
61 |
+
def encode(self, query: str) -> torch.Tensor:
|
62 |
+
"""Predict/infer text embedding for a given query."""
|
63 |
+
query_emb = self.model.forward([query], self.tokenizer)
|
64 |
+
return query_emb
|
65 |
+
|
66 |
+
|
67 |
+
class ImageEnoder:
|
68 |
+
"""Encodes the given image"""
|
69 |
+
|
70 |
+
def __init__(self, model_path="clip-ViT-B-32"):
|
71 |
+
self.model = SentenceTransformer(model_path)
|
72 |
+
|
73 |
+
@torch.no_grad()
|
74 |
+
def encode(self, image: Image) -> torch.Tensor:
|
75 |
+
"""Predict/infer text embedding for a given query."""
|
76 |
+
image_emb = self.model.encode([image], convert_to_tensor=True, show_progress_bar=False)
|
77 |
+
return image_emb
|
78 |
+
|
79 |
+
|
80 |
+
class Retriever:
|
81 |
+
"""Retrieves relevant images for a given text embedding."""
|
82 |
+
|
83 |
+
def __init__(self, image_embeddings_path=None):
|
84 |
+
self.text_encoder = TextEncoder()
|
85 |
+
self.image_encoder = ImageEnoder()
|
86 |
+
|
87 |
+
with open(image_embeddings_path, "rb") as file:
|
88 |
+
self.image_names, self.image_embeddings = pickle.load(file)
|
89 |
+
self.image_names = [
|
90 |
+
img_name.replace("fashion-aggregator/fashion_aggregator/data/photos/", "")
|
91 |
+
for img_name in self.image_names
|
92 |
+
]
|
93 |
+
print("Images:", len(self.image_names))
|
94 |
+
|
95 |
+
@torch.no_grad()
|
96 |
+
def predict(self, text_query: str, k: int = 10) -> List[Any]:
|
97 |
+
"""Return top-k relevant items for a given embedding"""
|
98 |
+
query_emb = self.text_encoder.encode(text_query)
|
99 |
+
relevant_images = util.semantic_search(query_emb, self.image_embeddings, top_k=k)[0]
|
100 |
+
return relevant_images
|
101 |
+
|
102 |
+
@torch.no_grad()
|
103 |
+
def search_images(self, text_query: str, k: int = 6) -> Dict[str, List[Any]]:
|
104 |
+
"""Return top-k relevant images for a given embedding"""
|
105 |
+
images = self.predict(text_query, k)
|
106 |
+
paths_and_scores = {"path": [], "score": []}
|
107 |
+
for img in images:
|
108 |
+
paths_and_scores["path"].append(os.path.join(RAW_PHOTOS_DIR, self.image_names[img["corpus_id"]]))
|
109 |
+
paths_and_scores["score"].append(img["score"])
|
110 |
+
return paths_and_scores
|
111 |
+
|
112 |
+
|
113 |
+
def main(args):
|
114 |
+
predictor = PredictorBackend(url=args.model_url)
|
115 |
+
frontend = make_frontend(predictor.run, flagging=args.flagging, gantry=args.gantry, app_name=args.application)
|
116 |
+
frontend.launch(
|
117 |
+
# server_name="0.0.0.0", # make server accessible, binding all interfaces # noqa: S104
|
118 |
+
# server_port=args.port, # set a port to bind to, failing if unavailable
|
119 |
+
# share=False, # should we create a (temporary) public link on https://gradio.app?
|
120 |
+
# favicon_path=FAVICON, # what icon should we display in the address bar?
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
def make_frontend(
|
125 |
+
fn: Callable[[Image], str], flagging: bool = False, gantry: bool = False, app_name: str = "fashion-aggregator"
|
126 |
+
):
|
127 |
+
"""Creates a gradio.Interface frontend for text to image search function."""
|
128 |
+
|
129 |
+
allow_flagging = "never"
|
130 |
+
|
131 |
+
# build a basic browser interface to a Python function
|
132 |
+
frontend = gr.Interface(
|
133 |
+
fn=fn, # which Python function are we interacting with?
|
134 |
+
outputs=gr.Gallery(label="Relevant Items"),
|
135 |
+
# what input widgets does it need? we configure an image widget
|
136 |
+
inputs=gr.components.Textbox(label="Item Description"),
|
137 |
+
title="๐ Text2Image ๐", # what should we display at the top of the page?
|
138 |
+
thumbnail=FAVICON, # what should we display when the link is shared, e.g. on social media?
|
139 |
+
description=__doc__, # what should we display just above the interface?
|
140 |
+
cache_examples=False, # should we cache those inputs for faster inference? slows down start
|
141 |
+
allow_flagging=allow_flagging, # should we show users the option to "flag" outputs?
|
142 |
+
flagging_options=["incorrect", "offensive", "other"], # what options do users have for feedback?
|
143 |
+
)
|
144 |
+
return frontend
|
145 |
+
|
146 |
+
|
147 |
+
class PredictorBackend:
|
148 |
+
"""Interface to a backend that serves predictions.
|
149 |
+
|
150 |
+
To communicate with a backend accessible via a URL, provide the url kwarg.
|
151 |
+
|
152 |
+
Otherwise, runs a predictor locally.
|
153 |
+
"""
|
154 |
+
|
155 |
+
def __init__(self, url=None):
|
156 |
+
if url is not None:
|
157 |
+
self.url = url
|
158 |
+
self._predict = self._predict_from_endpoint
|
159 |
+
else:
|
160 |
+
model = Retriever(image_embeddings_path=EMBEDDINGS_FILE)
|
161 |
+
self._predict = model.predict
|
162 |
+
self._search_images = model.search_images
|
163 |
+
|
164 |
+
def run(self, text: str):
|
165 |
+
pred, metrics = self._predict_with_metrics(text)
|
166 |
+
self._log_inference(pred, metrics)
|
167 |
+
return pred
|
168 |
+
|
169 |
+
def _predict_with_metrics(self, text: str) -> Tuple[List[str], Dict[str, float]]:
|
170 |
+
paths_and_scores = self._search_images(text)
|
171 |
+
metrics = {"mean_score": sum(paths_and_scores["score"]) / len(paths_and_scores["score"])}
|
172 |
+
return paths_and_scores["path"], metrics
|
173 |
+
|
174 |
+
def _log_inference(self, pred, metrics):
|
175 |
+
for key, value in metrics.items():
|
176 |
+
logging.info(f"METRIC {key} {value}")
|
177 |
+
logging.info(f"PRED >begin\n{pred}\nPRED >end")
|
178 |
+
|
179 |
+
|
180 |
+
def _make_parser():
|
181 |
+
parser = argparse.ArgumentParser(description=__doc__)
|
182 |
+
parser.add_argument(
|
183 |
+
"--model_url",
|
184 |
+
default=None,
|
185 |
+
type=str,
|
186 |
+
help="Identifies a URL to which to send image data. Data is base64-encoded, converted to a utf-8 string, and then set via a POST request as JSON with the key 'image'. Default is None, which instead sends the data to a model running locally.",
|
187 |
+
)
|
188 |
+
parser.add_argument(
|
189 |
+
"--port",
|
190 |
+
default=DEFAULT_PORT,
|
191 |
+
type=int,
|
192 |
+
help=f"Port on which to expose this server. Default is {DEFAULT_PORT}.",
|
193 |
+
)
|
194 |
+
parser.add_argument(
|
195 |
+
"--flagging",
|
196 |
+
action="store_true",
|
197 |
+
help="Pass this flag to allow users to 'flag' model behavior and provide feedback.",
|
198 |
+
)
|
199 |
+
parser.add_argument(
|
200 |
+
"--gantry",
|
201 |
+
action="store_true",
|
202 |
+
help="Pass --flagging and this flag to log user feedback to Gantry. Requires GANTRY_API_KEY to be defined as an environment variable.",
|
203 |
+
)
|
204 |
+
parser.add_argument(
|
205 |
+
"--application",
|
206 |
+
default=DEFAULT_APPLICATION_NAME,
|
207 |
+
type=str,
|
208 |
+
help=f"Name of the Gantry application to which feedback should be logged, if --gantry and --flagging are passed. Default is {DEFAULT_APPLICATION_NAME}.",
|
209 |
+
)
|
210 |
+
return parser
|
211 |
+
|
212 |
+
|
213 |
+
if __name__ == "__main__":
|
214 |
+
parser = _make_parser()
|
215 |
+
args = parser.parse_args()
|
216 |
+
main(args)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sentence-transformers==2.2.2
|
2 |
+
clip @ git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1
|
3 |
+
multilingual-clip==1.0.10
|
4 |
+
wandb
|