File size: 10,060 Bytes
3aa0ca8 eebec00 a2e978b 30f09bf f3df6f1 30f09bf eebec00 3aa0ca8 f734c44 3aa0ca8 f734c44 bb8619e 3aa0ca8 eebec00 01e0de2 eebec00 01e0de2 eebec00 3aa0ca8 01e0de2 3aa0ca8 bb8619e 3aa0ca8 eebec00 3aa0ca8 802b807 bb8619e 3aa0ca8 eebec00 b6a0d59 eebec00 bb8619e f734c44 bb8619e eebec00 802b807 eebec00 3aa0ca8 bb8619e 7c5e6e0 bb8619e 3aa0ca8 bb8619e 3aa0ca8 eebec00 15417c3 eebec00 3aa0ca8 15417c3 802b807 15417c3 eebec00 3aa0ca8 e5bd30a 802b807 e5bd30a bb8619e 7c5e6e0 bb8619e 7c5e6e0 bb8619e e5bd30a 1a904df f734c44 3aa0ca8 eebec00 bb8619e eebec00 bb8619e eebec00 3aa0ca8 7c5e6e0 eebec00 bb8619e 17c74fe bb8619e 17c74fe 3aa0ca8 f734c44 bb8619e 3aa0ca8 bb8619e 3aa0ca8 e5edf7a 3aa0ca8 17c74fe 3aa0ca8 eebec00 3aa0ca8 802b807 bb8619e 3aa0ca8 718ed81 3aa0ca8 6f4d4ac 7c5e6e0 6f4d4ac 3aa0ca8 718ed81 888ff7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import torch
import gradio as gr
from PIL import Image
import qrcode
from pathlib import Path
from multiprocessing import cpu_count
import requests
import io
import os
from PIL import Image
from diffusers import (
StableDiffusionPipeline,
StableDiffusionControlNetImg2ImgPipeline,
ControlNetModel,
DDIMScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
HeunDiscreteScheduler,
EulerDiscreteScheduler,
)
qrcode_generator = qrcode.QRCode(
version=1,
error_correction=qrcode.ERROR_CORRECT_H,
box_size=10,
border=4,
)
controlnet = ControlNetModel.from_pretrained(
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16,
).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
def resize_for_condition_image(input_image: Image.Image, resolution: int):
input_image = input_image.convert("RGB")
W, H = input_image.size
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(round(H / 64.0)) * 64
W = int(round(W / 64.0)) * 64
img = input_image.resize((W, H), resample=Image.LANCZOS)
return img
SAMPLER_MAP = {
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
"DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True),
"Heun": lambda config: HeunDiscreteScheduler.from_config(config),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
"DDIM": lambda config: DDIMScheduler.from_config(config),
"DEIS": lambda config: DEISMultistepScheduler.from_config(config),
}
def inference(
qr_code_content: str,
prompt: str,
negative_prompt: str,
guidance_scale: float = 10.0,
controlnet_conditioning_scale: float = 2.0,
strength: float = 0.8,
seed: int = -1,
init_image: Image.Image | None = None,
qrcode_image: Image.Image | None = None,
use_qr_code_as_init_image = True,
sampler = "DPM++ Karras SDE",
):
if prompt is None or prompt == "":
raise gr.Error("Prompt is required")
if qrcode_image is None and qr_code_content == "":
raise gr.Error("QR Code Image or QR Code Content is required")
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
if qr_code_content != "" or qrcode_image.size == (1, 1):
print("Generating QR Code from content")
qr = qrcode.QRCode(
version=1,
error_correction=qrcode.constants.ERROR_CORRECT_H,
box_size=10,
border=4,
)
qr.add_data(qr_code_content)
qr.make(fit=True)
qrcode_image = qr.make_image(fill_color="black", back_color="white")
qrcode_image = resize_for_condition_image(qrcode_image, 768)
else:
print("Using QR Code Image")
qrcode_image = resize_for_condition_image(qrcode_image, 768)
# hack due to gradio examples
init_image = qrcode_image
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=qrcode_image,
control_image=qrcode_image, # type: ignore
width=768, # type: ignore
height=768, # type: ignore
guidance_scale=float(guidance_scale),
controlnet_conditioning_scale=float(controlnet_conditioning_scale), # type: ignore
generator=generator,
strength=float(strength),
num_inference_steps=40,
)
return out.images[0] # type: ignore
with gr.Blocks() as blocks:
gr.Markdown(
"""
# QR Code AI Art Generator
## 💡 How to generate beautiful QR codes
We use the QR code image as the initial image **and** the control image, which allows you to generate
QR Codes that blend in **very naturally** with your provided prompt.
The strength parameter defines how much noise is added to your QR code and the noisy QR code is then guided towards both your prompt and the QR code image via Controlnet.
Use a high strength value between 0.8 and 0.95 and choose a conditioning scale between 0.6 and 2.0.
This mode arguably achieves the asthetically most appealing QR code images, but also requires more tuning of the controlnet conditioning scale and the strength value. If the generated image
looks way to much like the original QR code, make sure to gently increase the *strength* value and reduce the *conditioning* scale. Also check out the examples below.
model: https://huggingface.co/DionTimmer/controlnet_qrcode-control_v1p_sd15
<a href="https://huggingface.co/spaces/huggingface-projects/QR-code-AI-art-generator?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> for no queue on your own hardware.</p>
"""
)
with gr.Row():
with gr.Column():
qr_code_content = gr.Textbox(
label="QR Code Content",
info="QR Code Content or URL",
value="",
)
with gr.Accordion(label="QR Code Image (Optional)", open=False):
qr_code_image = gr.Image(
label="QR Code Image (Optional). Leave blank to automatically generate QR code",
type="pil",
)
prompt = gr.Textbox(
label="Prompt",
info="Prompt that guides the generation towards",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="ugly, disfigured, low quality, blurry, nsfw",
)
use_qr_code_as_init_image = gr.Checkbox(label="Use QR code as init image", value=True, interactive=False, info="Whether init image should be QR code. Unclick to pass init image or generate init image with Stable Diffusion 2.1")
with gr.Accordion(label="Init Images (Optional)", open=False, visible=False) as init_image_acc:
init_image = gr.Image(label="Init Image (Optional). Leave blank to generate image with SD 2.1", type="pil")
with gr.Accordion(
label="Params: The generated QR Code functionality is largely influenced by the parameters detailed below",
open=True,
):
controlnet_conditioning_scale = gr.Slider(
minimum=0.0,
maximum=5.0,
step=0.01,
value=1.1,
label="Controlnet Conditioning Scale",
)
strength = gr.Slider(
minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength"
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=50.0,
step=0.25,
value=7.5,
label="Guidance Scale",
)
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE", label="Sampler")
seed = gr.Slider(
minimum=-1,
maximum=9999999999,
step=1,
value=2313123,
label="Seed",
randomize=True,
)
with gr.Row():
run_btn = gr.Button("Run")
with gr.Column():
result_image = gr.Image(label="Result Image")
run_btn.click(
inference,
inputs=[
qr_code_content,
prompt,
negative_prompt,
guidance_scale,
controlnet_conditioning_scale,
strength,
seed,
init_image,
qr_code_image,
use_qr_code_as_init_image,
sampler,
],
outputs=[result_image],
concurrency_limit=1
)
gr.Examples(
examples=[
[
"https://huggingface.co/",
"A sky view of a colorful lakes and rivers flowing through the desert",
"ugly, disfigured, low quality, blurry, nsfw",
7.5,
1.3,
0.9,
5392011833,
None,
None,
True,
"DPM++ Karras SDE",
],
[
"https://huggingface.co/",
"Bright sunshine coming through the cracks of a wet, cave wall of big rocks",
"ugly, disfigured, low quality, blurry, nsfw",
7.5,
1.11,
0.9,
2523992465,
None,
None,
True,
"DPM++ Karras SDE",
],
[
"https://huggingface.co/",
"Sky view of highly aesthetic, ancient greek thermal baths in beautiful nature",
"ugly, disfigured, low quality, blurry, nsfw",
7.5,
1.5,
0.9,
2523992465,
None,
None,
True,
"DPM++ Karras SDE",
],
],
fn=inference,
inputs=[
qr_code_content,
prompt,
negative_prompt,
guidance_scale,
controlnet_conditioning_scale,
strength,
seed,
init_image,
qr_code_image,
use_qr_code_as_init_image,
sampler,
],
outputs=[result_image],
cache_examples=True,
)
blocks.queue(max_size=20,api_open=False)
blocks.launch(share=bool(os.environ.get("SHARE", False)), show_api=False)
|