File size: 2,527 Bytes
d761518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4203a70
 
 
d761518
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
from PIL import Image
from RealESRGAN import RealESRGAN
import gradio as gr

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model2 = RealESRGAN(device, scale=2)
model2.load_weights('weights/RealESRGAN_x2.pth', download=True)
model4 = RealESRGAN(device, scale=4)
model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
model8 = RealESRGAN(device, scale=8)
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)


def inference(image, size):
    global model2
    global model4
    global model8
    if image is None:
        raise gr.Error("Image not uploaded")

    width, height = image.size
    if width >= 5000 or height >= 5000:
        raise gr.Error("The image is too large.")

    if torch.cuda.is_available():
        torch.cuda.empty_cache()

    if size == '2x':
        try:
            result = model2.predict(image.convert('RGB'))
        except torch.cuda.OutOfMemoryError as e:
            print(e)
            model2 = RealESRGAN(device, scale=2)
            model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
            result = model2.predict(image.convert('RGB'))
    elif size == '4x':
        try:
            result = model4.predict(image.convert('RGB'))
        except torch.cuda.OutOfMemoryError as e:
            print(e)
            model4 = RealESRGAN(device, scale=4)
            model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
            result = model2.predict(image.convert('RGB'))
    else:
        try:
            result = model8.predict(image.convert('RGB'))
        except torch.cuda.OutOfMemoryError as e:
            print(e)
            model8 = RealESRGAN(device, scale=8)
            model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
            result = model2.predict(image.convert('RGB'))

    print(f"Image size ({device}): {size} ... OK")
    return result


title = "RealESRGAN UpScale Model: 2x 4x 8x"
description = "This model running on cpu so it takes bit time,so pls be patient :)"


gr.Interface(inference,
             [gr.Image(type="pil"),
              gr.Radio(['2x', '4x', '8x'],
                       type="value",
                       value='2x',
                       label='Resolution model')],
             gr.Image(type="pil", label="Output"),
             title=title,
             description=description,
             allow_flagging='never',
             cache_examples=False,
             ).queue(api_open=False).launch(show_error=True, show_api=False)