Spaces:
Running
Running
import os | |
import torch | |
from torch.nn import functional as F | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
from huggingface_hub import hf_hub_url, hf_hub_download, cached_download | |
from .rrdbnet_arch import RRDBNet | |
from .utils import pad_reflect, split_image_into_overlapping_patches, stich_together, \ | |
unpad_image | |
HF_MODELS = { | |
2: dict( | |
repo_id='sberbank-ai/Real-ESRGAN', | |
filename='RealESRGAN_x2.pth', | |
), | |
4: dict( | |
repo_id='sberbank-ai/Real-ESRGAN', | |
filename='RealESRGAN_x4.pth', | |
), | |
8: dict( | |
repo_id='sberbank-ai/Real-ESRGAN', | |
filename='RealESRGAN_x8.pth', | |
), | |
} | |
class RealESRGAN: | |
def __init__(self, device, scale=4): | |
self.device = device | |
self.scale = scale | |
self.model = RRDBNet( | |
num_in_ch=3, num_out_ch=3, num_feat=64, | |
num_block=23, num_grow_ch=32, scale=scale | |
) | |
def load_weights(self, model_path, download=True): | |
if not os.path.exists(model_path) and download: | |
assert self.scale in [2, 4, 8], 'You can download models only with scales: 2, 4, 8' | |
config = HF_MODELS[self.scale] | |
cache_dir = os.path.dirname(model_path) | |
local_filename = os.path.basename(model_path) | |
config_file_url = hf_hub_url(repo_id=config['repo_id'], filename=config['filename']) | |
htr = hf_hub_download(repo_id=config['repo_id'], cache_dir=cache_dir, local_dir=cache_dir, | |
filename=config['filename']) | |
print(htr) | |
# cached_download(config_file_url, cache_dir=cache_dir, force_filename=local_filename) | |
print('Weights downloaded to:', os.path.join(cache_dir, local_filename)) | |
loadnet = torch.load(model_path) | |
if 'params' in loadnet: | |
self.model.load_state_dict(loadnet['params'], strict=True) | |
elif 'params_ema' in loadnet: | |
self.model.load_state_dict(loadnet['params_ema'], strict=True) | |
else: | |
self.model.load_state_dict(loadnet, strict=True) | |
self.model.eval() | |
self.model.to(self.device) | |
# @torch.cuda.amp.autocast() | |
def predict(self, lr_image, batch_size=4, patches_size=192, | |
padding=24, pad_size=15): | |
torch.autocast(device_type=self.device.type) | |
scale = self.scale | |
device = self.device | |
lr_image = np.array(lr_image) | |
lr_image = pad_reflect(lr_image, pad_size) | |
patches, p_shape = split_image_into_overlapping_patches( | |
lr_image, patch_size=patches_size, padding_size=padding | |
) | |
img = torch.FloatTensor(patches / 255).permute((0, 3, 1, 2)).to(device).detach() | |
with torch.no_grad(): | |
res = self.model(img[0:batch_size]) | |
for i in range(batch_size, img.shape[0], batch_size): | |
res = torch.cat((res, self.model(img[i:i + batch_size])), 0) | |
sr_image = res.permute((0, 2, 3, 1)).cpu().clamp_(0, 1) | |
np_sr_image = sr_image.numpy() | |
padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,) | |
scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,) | |
np_sr_image = stich_together( | |
np_sr_image, padded_image_shape=padded_size_scaled, | |
target_shape=scaled_image_shape, padding_size=padding * scale | |
) | |
sr_img = (np_sr_image * 255).astype(np.uint8) | |
sr_img = unpad_image(sr_img, pad_size * scale) | |
sr_img = Image.fromarray(sr_img) | |
return sr_img |