Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torchaudio | |
import torch | |
import os | |
import time | |
import soundfile as sf | |
languages = { | |
"English": "eng", | |
"Hindi": "hin", | |
"Portuguese": "por", | |
"Russian": "rus", | |
"Spanish": "spa" | |
} | |
welcome_message = """ | |
# Welcome to Tonic's Unity On Device! | |
Tonic's Unity On Device uses [facebook/seamless-m4t-unity-small](https://huggingface.co/facebook/seamless-m4t-unity-small) for audio translation & accessibility. | |
Tonic's Unity On Device!🚀 on your own data & in your own way by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/SeamlessOnDevice?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> | |
### Join us : | |
TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/GWpVpekp) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)" | |
""" | |
def save_and_resample_audio(input_audio_path, output_audio_path, resample_rate=16000): | |
waveform, sample_rate = torchaudio.load(input_audio_path) | |
resampler = torchaudio.transforms.Resample(sample_rate, resample_rate, dtype=waveform.dtype) | |
resampled_waveform = resampler(waveform) | |
torchaudio.save(output_audio_path, resampled_waveform, resample_rate) | |
def save_audio(audio_input, output_dir="saved_audio", resample_rate=16000): | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
sample_rate, audio_data = audio_input | |
file_name = f"audio_{int(time.time())}.wav" | |
file_path = os.path.join(output_dir, file_name) | |
sf.write(file_path, audio_data, sample_rate) | |
resampled_file_path = os.path.join(output_dir, f"resampled_{file_name}") | |
save_and_resample_audio(file_path, resampled_file_path, resample_rate) | |
return resampled_file_path | |
def speech_to_text(audio_data, tgt_lang): | |
file_path = save_audio(audio_data) | |
audio_input, _ = torchaudio.load(file_path) | |
s2t_model = torch.jit.load("unity_on_device.ptl", map_location=torch.device('cpu')) | |
with torch.no_grad(): | |
model_output = s2t_model(audio_input, tgt_lang=languages[tgt_lang]) | |
transcribed_text = model_output[0] if model_output else "" | |
print("Speech to Text Model Output:", transcribed_text) | |
return transcribed_text | |
def speech_to_speech_translation(audio_data, tgt_lang): | |
file_path = save_audio(audio_data) | |
audio_input, _ = torchaudio.load(file_path) | |
s2st_model = torch.jit.load("unity_on_device.ptl", map_location=torch.device('cpu')) | |
with torch.no_grad(): | |
translated_text, units, waveform = s2st_model(audio_input, tgt_lang=languages[tgt_lang]) | |
output_file = "/tmp/result.wav" | |
torchaudio.save(output_file, waveform.unsqueeze(0), sample_rate=16000) | |
print("Translated Text:", translated_text) | |
print("Units:", units) | |
print("Waveform Shape:", waveform.shape) | |
return translated_text, output_file | |
def create_interface(): | |
with gr.Blocks(theme='ParityError/Anime') as interface: | |
gr.Markdown(welcome_message) | |
input_language = gr.Dropdown(list(languages.keys()), label="Select Target Language", value="English") | |
with gr.Accordion("Speech to Text", open=False) as stt_accordion: | |
audio_input_stt = gr.Audio(label="Upload or Record Audio") | |
text_output_stt = gr.Text(label="Transcribed Text") | |
stt_button = gr.Button("Transcribe") | |
stt_button.click(speech_to_text, inputs=[audio_input_stt, input_language], outputs=text_output_stt) | |
gr.Examples([["audio1.wav"]], inputs=[audio_input_stt], outputs=[text_output_stt]) | |
with gr.Accordion("Speech to Speech Translation", open=False) as s2st_accordion: | |
audio_input_s2st = gr.Audio(label="Upload or Record Audio") | |
text_output_s2st = gr.Text(label="Translated Text") | |
audio_output_s2st = gr.Audio(label="Translated Audio", type="filepath") | |
s2st_button = gr.Button("Translate") | |
s2st_button.click(speech_to_speech_translation, inputs=[audio_input_s2st, input_language], outputs=[text_output_s2st, audio_output_s2st]) | |
gr.Examples([["audio1.wav"]], inputs=[audio_input_s2st], outputs=[text_output_s2st, audio_output_s2st]) | |
return interface | |
app = create_interface() | |
app.launch(show_error=True, debug=True) |