File size: 13,295 Bytes
c9bb3f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import string
import math
import json
from itertools import chain
import os

import torch
import torch.distributed as dist

from data import data_utils


def get_symbols_to_strip_from_output(generator):
    if hasattr(generator, "symbols_to_strip_from_output"):
        return generator.symbols_to_strip_from_output
    else:
        return {generator.bos, generator.eos}


def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None):
    x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator))
    if bpe is not None:
        x = bpe.decode(x)
    if tokenizer is not None:
        x = tokenizer.decode(x)
    return x


def eval_caption(task, generator, models, sample, **kwargs):
    transtab = str.maketrans({key: None for key in string.punctuation})
    hypos = task.inference_step(generator, models, sample)
    results = []
    for i, sample_id in enumerate(sample["id"].tolist()):
        detok_hypo_str = decode_fn(hypos[i][0]["tokens"], task.tgt_dict, task.bpe, generator)
        results.append({"image_id": str(sample_id), "caption": detok_hypo_str.translate(transtab).strip()})
    return results, None


def eval_vqa_gen(task, generator, models, sample, **kwargs):
    if kwargs['beam_search_vqa_eval']:
        hypos = task.inference_step(generator, models, sample, prefix_tokens=sample['prefix_tokens'])
        results = []
        for i, sample_id in enumerate(sample["id"].tolist()):
            prefix_len = sample['prefix_tokens'][i].ne(1).sum().item()
            detok_hypo_str = decode_fn(hypos[i][0]["tokens"][prefix_len:], task.tgt_dict, task.bpe, generator)
            results.append({"question_id": int(sample_id), "answer": detok_hypo_str.strip()})
        scores = [ref_dict.get(result['answer'], 0) for ref_dict, result in zip(sample['ref_dict'], results)]
        return results, scores

    encoder_out = models[0].encoder(
        sample["net_input"]["src_tokens"],
        src_lengths=sample["net_input"]["src_lengths"],
        patch_images=sample["net_input"]["patch_images"],
        patch_masks=sample["net_input"]["patch_masks"]
    )
    device = sample["net_input"]["src_tokens"].device
    eos_item = torch.tensor([task.src_dict.eos()])
    pad = task.src_dict.pad()
    valid_result = []
    for valid_answers, valid_constraint_masks in zip(task.valid_answers_list, task.valid_constraint_masks_list):
        valid_size = len(valid_answers)
        valid_tgt_items = [
            torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item])
            for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
        ]
        valid_prev_items = [
            torch.cat([torch.tensor(decoder_prompt), valid_answer])
            for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
        ]
        valid_constraint_mask_items = [
            torch.cat(
                [torch.zeros(len(decoder_prompt) - 1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask],
                dim=0
            )
            for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks
        ]
        valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad).to(device)
        valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad).to(device)
        valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad).to(device)

        new_encoder_out = {}
        new_encoder_out["encoder_out"] = [
            encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1)
        ]
        new_encoder_out["encoder_padding_mask"] = [
            encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0)
        ]
        new_encoder_out["position_embeddings"] = [
            encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0)
        ]

        decoder_out = models[0].decoder(valid_prev_output, encoder_out=new_encoder_out)
        decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf)
        lprobs = models[0].get_normalized_probs(decoder_out, log_probs=True)
        scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1)
        scores = scores.masked_fill(valid_tgt.eq(task.tgt_dict.pad()), 0)
        scores = scores.masked_fill((~valid_constraint_masks).all(2), 0)
        scores = scores.sum(1)
        scores = scores.view(-1, valid_size)
        valid_result.append(scores)
    valid_result = torch.cat(valid_result, dim=-1)
    predicts = valid_result.argmax(1).tolist()
    hyps = [task.index2ans[predict_index] for predict_index in predicts]
    results = [{"question_id": int(id), "answer": hyp} for id, hyp in zip(sample["id"].tolist(), hyps)]
    scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)]
    return results, scores


def eval_refcoco(task, generator, models, sample, **kwargs):
    def _calculate_ap_score(hyps, refs, thresh=0.5):
        interacts = torch.cat(
            [torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]),
             torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])],
            dim=1
        )
        area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1])
        area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1])
        interacts_w = interacts[:, 2] - interacts[:, 0]
        interacts_h = interacts[:, 3] - interacts[:, 1]
        area_interacts = interacts_w * interacts_h
        ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6)
        return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float()

    gen_out = task.inference_step(generator, models, sample)
    hyps = []
    for i in range(len(gen_out)):
        hyps.append(gen_out[i][0]["tokens"][:-1] - len(task.src_dict) + task.cfg.num_bins)
    hyps = torch.stack(hyps, dim=0)
    hyps = hyps / (task.cfg.num_bins - 1) * task.cfg.max_image_size
    hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
    hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)

    results = [
        {"uniq_id": sample_id,
         "box": [hyps[i][0].item(), hyps[i][1].item(), hyps[i][2].item(), hyps[i][3].item()]}
        for i, sample_id in enumerate(sample["id"].tolist())
    ]
    scores = _calculate_ap_score(hyps, sample['region_coords'].float())
    return results, scores


def eval_snli_ve(task, generator, models, sample, **kwargs):
    encoder_out = models[0].encoder(
        sample["net_input"]["src_tokens"],
        src_lengths=sample["net_input"]["src_lengths"],
        patch_images=sample["net_input"]["patch_images"],
        patch_masks=sample["net_input"]["patch_masks"]
    )
    device = sample["net_input"]["src_tokens"].device
    eos_item = torch.tensor([task.src_dict.eos()])
    pad = task.src_dict.pad()
    valid_result = []
    for valid_answers, valid_constraint_masks in zip(task.valid_answers_list, task.valid_constraint_masks_list):
        valid_size = len(valid_answers)
        valid_tgt_items = [
            torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item])
            for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
        ]
        valid_prev_items = [
            torch.cat([torch.tensor(decoder_prompt), valid_answer])
            for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
        ]
        valid_constraint_mask_items = [
            torch.cat(
                [torch.zeros(len(decoder_prompt) - 1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask],
                dim=0
            )
            for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks
        ]
        valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad).to(device)
        valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad).to(device)
        valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad).to(device)

        new_encoder_out = {}
        new_encoder_out["encoder_out"] = [
            encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1)
        ]
        new_encoder_out["encoder_padding_mask"] = [
            encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0)
        ]
        new_encoder_out["position_embeddings"] = [
            encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0)
        ]

        decoder_out = models[0].decoder(valid_prev_output, encoder_out=new_encoder_out)
        decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf)
        lprobs = models[0].get_normalized_probs(decoder_out, log_probs=True)
        scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1)
        scores = scores.masked_fill(valid_tgt.eq(task.tgt_dict.pad()), 0)
        scores = scores.masked_fill((~valid_constraint_masks).all(2), 0)
        scores = scores.sum(1)
        scores = scores.view(-1, valid_size)
        valid_result.append(scores)
    valid_result = torch.cat(valid_result, dim=-1)
    predicts = valid_result.argmax(1).tolist()
    hyps = [task.index2ans[predict_index] for predict_index in predicts]
    results = [{"uniq_id": id, "answer": hyp} for id, hyp in zip(sample["id"].tolist(), hyps)]
    scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)]
    return results, scores


def eval_image_gen(task, generator, models, sample, **kwargs):
    hypos, _ = task.inference_image(generator, sample, models)
    tokens = sample['net_input']['src_tokens'][0].view(-1).tolist()
    caption = task.bpe.decode(task.tgt_dict.string([token for token in tokens if token >= 4]))[
              38:].replace('/', '')

    text_similarity_score, indices = task.compute_text_similarity(hypos, caption,
                                                                  sample['net_input']['src_tokens'].device)
    results = []
    for i, indice in enumerate(indices):
        results.append({"sample_id": str(sample["id"][0]), "score": text_similarity_score[i], "image": hypos[indice]})

    scores = [max(text_similarity_score).item()]
    return results, scores


def eval_glue(task, generator, models, sample, **kwargs):
    net_output = models[0](**sample["net_input"])
    net_output[0].masked_fill_(~sample["constraint_masks"], -math.inf)
    last_token_ids = sample["net_input"]["prev_output_tokens"].ne(task.src_dict.pad()).sum(1, keepdim=True) - 1
    logits = net_output[0].gather(1, last_token_ids.unsqueeze(2).expand(-1, -1, net_output[0].size(2)))
    logits = logits.squeeze(1)
    predicts = logits.argmax(1).tolist()
    hyps = [task.bpe.decode(task.src_dict[predict]).strip() for predict in predicts]
    results = [{"hyp": hyp, "ref": ref_dict.keys()[0]} for hyp, ref_dict in zip(hyps, sample['ref_dict'])]
    return results, None


def eval_step(task, generator, models, sample, **kwargs):
    if task.cfg._name == 'caption':
        return eval_caption(task, generator, models, sample, **kwargs)
    elif task.cfg._name == 'vqa_gen':
        return eval_vqa_gen(task, generator, models, sample, **kwargs)
    elif task.cfg._name == 'refcoco':
        return eval_refcoco(task, generator, models, sample, **kwargs)
    elif task.cfg._name == 'snli_ve':
        return eval_snli_ve(task, generator, models, sample, **kwargs)
    elif task.cfg._name == 'image_gen':
        return eval_image_gen(task, generator, models, sample, **kwargs)
    elif task.cfg._name in {'cola', 'mnli', 'mrpc', 'qnli', 'qqp', 'rte', 'sst2'}:
        return eval_glue(task, generator, models, sample, **kwargs)
    else:
        raise NotImplementedError


def merge_results(task, cfg, logger, score_cnt, score_sum, results):
    if task.cfg._name == 'image_gen':
        if cfg.distributed_training.distributed_world_size > 1:
            dist.all_reduce(score_sum.data)
            dist.all_reduce(score_cnt.data)
        if score_cnt.item() > 0:
            logger.info("score_sum: {}, score_cnt: {}, score: {}".format(
                score_sum, score_cnt, round(score_sum.item() / score_cnt.item(), 4)
            ))
    else:
        gather_results = None
        if cfg.distributed_training.distributed_world_size > 1:
            gather_results = [None for _ in range(dist.get_world_size())]
            dist.all_gather_object(gather_results, results)
            dist.all_reduce(score_sum.data)
            dist.all_reduce(score_cnt.data)
        if score_cnt.item() > 0:
            logger.info("score_sum: {}, score_cnt: {}, score: {}".format(
                score_sum, score_cnt, round(score_sum.item() / score_cnt.item(), 4)
            ))

        if cfg.distributed_training.distributed_world_size == 1 or dist.get_rank() == 0:
            os.makedirs(cfg.common_eval.results_path, exist_ok=True)
            output_path = os.path.join(cfg.common_eval.results_path, "{}_predict.json".format(cfg.dataset.gen_subset))
            gather_results = list(chain(*gather_results)) if gather_results is not None else results
            with open(output_path, 'w') as fw:
                json.dump(gather_results, fw)