tts_mockingbird / app.py
khof312's picture
Fix error handling for AfricanVoices until Flite installation can be resolved.
028db54
raw
history blame
14.4 kB
import torch
import scipy
import os
import streamlit as st
import pandas as pd
from transformers import pipeline #set_seed,
from transformers import VitsTokenizer, VitsModel
from datasets import load_dataset, Audio
from huggingface_hub.inference_api import InferenceApi
from src import *
########################
col1, col2 = st.columns([20,3])
with col2:
st.image('logo.png', use_column_width=True)
with col1:
st.title("Mockingbird")
st.header("A demo of open Text to Speech tools")
tts, about = st.tabs(["Text to speech", "**About**"])
########################
with tts:
# Configurations -- language choice and text
tts_lang = st.selectbox('Language of text', (language_list), format_func = decode_iso)
tts_text = st.text_area(label = "Please enter your sentence here:",
value="", placeholder=placeholders[tts_lang] )
target_speaker_file = st.file_uploader("If you would like to test voice conversion, you may upload your audio below. You should upload one file in .wav format. If you don't, a default file will be used.",
type=['wav'])
# Inference
if st.button("Generate"):
# Warning about alphabet support
if tts_lang in ['rus', 'fas']:
st.warning("WARNING! On Windows, ESpeak-NG has trouble synthesizing output when input is provided from non-Latin alphabets.")
st.divider()
# Synthesis
with st.spinner(":rainbow[Synthesizing, please wait... (this will be slowest the first time you generate audio in a new language)]"):
if tts_text == "":
tts_text=placeholders[tts_lang]
# First, make the audio
base_mms = synth_mms(tts_text, models[tts_lang]['mms'])
base_coqui= synth_coqui(tts_text, models[tts_lang]['coqui'])
base_espeakng= synth_espeakng(tts_text, models[tts_lang]['espeakng'])
try:
base_toucan= synth_toucan(tts_text, models[tts_lang]['toucan'])
except:
base_toucan=None
base_piper= synth_piper(tts_text, models[tts_lang]['piper'])
if tts_lang=="swh":
finetuned_mms1 = synth_mms(tts_text, "khof312/mms-tts-swh-female-1")
finetuned_mms2 = synth_mms(tts_text, "khof312/mms-tts-swh-female-2")
if tts_lang=="spa":
finetuned_mms1 = synth_mms(tts_text, "ylacombe/mms-spa-finetuned-argentinian-monospeaker")
finetuned_mms2 = synth_mms(tts_text, "ylacombe/mms-spa-finetuned-chilean-monospeaker")
finetuned_mms3 = synth_mms(tts_text, "ylacombe/mms-spa-finetuned-colombian-monospeaker")
finetuned_mms4 = synth_mms(tts_text, "khof312/mms-tts-spa-female")
if tts_lang=="lin":
finetuned_mms1 = synth_mms(tts_text, "khof312/mms-tts-lin-female")
try:
finetuned_africanvoices = synth_africanvoices(tts_text, models[tts_lang]['africanvoices'])
except:
pass
#vc_mms
#vc_coqui
#vc_espeakng
"## Synthesis"
"### Default models"
row1 = st.columns([1,1,2])
row2 = st.columns([1,1,2])
row3 = st.columns([1,1,2])
row4 = st.columns([1,1,2])
row5 = st.columns([1,1,2])
row6 = st.columns([1,1,2])
row1[0].write("**Model**")
row1[1].write("**Configuration**")
row1[2].write("**Audio**")
if base_mms is not None:
row2[0].write(f"[Meta MMS](https://huggingface.co/docs/transformers/main/en/model_doc/mms)")
row2[1].write("default")
row2[2].audio(base_mms[0], sample_rate = base_mms[1])
if base_coqui is not None:
row3[0].write(f"[Coqui](https://docs.coqui.ai/en/latest/index.html)")
row3[1].write("default")
row3[2].audio(base_coqui[0], sample_rate = base_coqui[1])
if base_espeakng is not None:
row4[0].write(f"[Espeak-ng](https://github.com/espeak-ng/espeak-ng)")
row4[1].write("default")
row4[2].audio(base_espeakng[0], sample_rate = base_espeakng[1])
if base_toucan is not None:
row5[0].write(f"[IMS-Toucan](https://github.com/DigitalPhonetics/IMS-Toucan)")
row5[1].write("default")
row5[2].audio(base_toucan[0], sample_rate = base_toucan[1])
if base_piper is not None:
row6[0].write(f"[Piper](https://github.com/rhasspy/piper)")
row6[1].write("default")
row6[2].audio(base_piper[0], sample_rate = base_piper[1])
#################################################################
if tts_lang == "swh":
"### Fine Tuned"
row1 = st.columns([1,1,2])
row2 = st.columns([1,1,2])
row3 = st.columns([1,1,2])
row1[0].write("**Model**")
row1[1].write("**Configuration**")
row1[2].write("**Audio**")
row2[0].write(f"Meta MMS")
row2[1].write("[female 1](https://huggingface.co/khof312/mms-tts-swh-female-1)")
row2[2].audio(finetuned_mms1[0], sample_rate = finetuned_mms1[1])
row3[0].write(f"Meta MMS")
row3[1].write("[female 2](https://huggingface.co/khof312/mms-tts-swh-female-2)")
row3[2].audio(finetuned_mms2[0], sample_rate = finetuned_mms2[1])
if tts_lang == "spa":
"### Fine Tuned"
row1 = st.columns([1,1,2])
row2 = st.columns([1,1,2])
row3 = st.columns([1,1,2])
row4 = st.columns([1,1,2])
row5 = st.columns([1,1,2])
row1[0].write("**Model**")
row1[1].write("**Configuration**")
row1[2].write("**Audio**")
row2[0].write(f"Meta MMS")
row2[1].write("[ylacombe - Argentinian](https://huggingface.co/ylacombe/mms-spa-finetuned-argentinian-monospeaker)")
row2[2].audio(finetuned_mms1[0], sample_rate = finetuned_mms1[1])
row3[0].write(f"Meta MMS")
row3[1].write("[ylacombe - Chilean](https://huggingface.co/ylacombe/mms-spa-finetuned-chilean-monospeaker)")
row3[2].audio(finetuned_mms2[0], sample_rate = finetuned_mms2[1])
row4[0].write(f"Meta MMS")
row4[1].write("[ylacombe - Colombian](https://huggingface.co/ylacombe/mms-spa-finetuned-colombian-monospeaker)")
row4[2].audio(finetuned_mms3[0], sample_rate = finetuned_mms3[1])
row5[0].write(f"Meta MMS")
row5[1].write("[khof312 - female](https://huggingface.co/khof312/mms-tts-spa-female)")
row5[2].audio(finetuned_mms4[0], sample_rate = finetuned_mms4[1])
if tts_lang == "lin":
"### Fine Tuned"
row1 = st.columns([1,1,2])
row2 = st.columns([1,1,2])
row3 = st.columns([1,1,2])
row1[0].write("**Model**")
row1[1].write("**Configuration**")
row1[2].write("**Audio**")
row2[0].write(f"Meta MMS")
row2[1].write("[khof312 - female](https://huggingface.co/khof312/mms-tts-lin-female)")
row2[2].audio(finetuned_mms1[0], sample_rate = finetuned_mms1[1])
try:
row3[0].write(f"African voices")
row3[1].write("[African Voices]()")
row3[2].audio(finetuned_africanvoices[0], sample_rate = finetuned_africanvoices[1])
except:
pass
st.divider()
"## Voice conversion" #################################################################
st.warning('''Note: The naturalness of the audio will only be as good as that of the audio in "default models" above.''')
if target_speaker_file is not None:
rate, wav = scipy.io.wavfile.read(target_speaker_file)
scipy.io.wavfile.write("target_speaker_custom.wav", data=wav, rate=rate)
target_speaker = "target_speaker_custom.wav"
else:
target_speaker = "target_speaker.wav"
if base_mms is not None:
scipy.io.wavfile.write("source_speaker_mms.wav", rate=base_mms[1], data=base_mms[0].T)
converted_mms = convert_coqui('source_speaker_mms.wav', target_speaker)
if base_coqui is not None:
scipy.io.wavfile.write("source_speaker_coqui.wav", rate=base_coqui[1], data=base_coqui[0].T)
converted_coqui = convert_coqui('source_speaker_coqui.wav', target_speaker)
if base_espeakng is not None:
scipy.io.wavfile.write("source_speaker_espeakng.wav", rate=base_espeakng[1], data=base_espeakng[0].T)
converted_espeakng = convert_coqui('source_speaker_espeakng.wav', target_speaker)
scipy.io.wavfile.write("source_speaker_toucan.wav", rate=base_toucan[1], data=base_toucan[0].T)
converted_toucan = convert_coqui('source_speaker_toucan.wav', target_speaker)
row1 = st.columns([1,1,2])
row2 = st.columns([1,1,2])
row3 = st.columns([1,1,2])
row4 = st.columns([1,1,2])
row1[0].write("**Model**")
row1[1].write("**Configuration**")
row1[2].write("**Audio**")
if base_mms is not None:
row1[0].write(f"Meta MMS")
row1[1].write(f"converted")
row1[2].audio(converted_mms[0], sample_rate = converted_mms[1])
if base_coqui is not None:
row2[0].write(f"Coqui")
row2[1].write(f"converted")
row2[2].audio(converted_coqui[0], sample_rate = converted_coqui[1])
if base_espeakng is not None:
row3[0].write(f"Espeak-ng")
row3[1].write(f"converted")
row3[2].audio(converted_espeakng[0], sample_rate = converted_espeakng[1])
row4[0].write(f"IMS Toucan")
row4[1].write(f"converted")
row4[2].audio(converted_toucan[0], sample_rate = converted_toucan[1])
#row3[0].write("MMS-TTS-SWH")
#row3[1].audio(synth, sample_rate=16_000)
#row3[2].audio(synth, sample_rate=16_000)
#st.audio(synth, sample_rate=16_000)
#data.write(np.random.randn(10, 1)
#col1.subheader("A wide column with a chart")
#col1.line_chart(data)
#col2.subheader("A narrow column with the data")
#col2.write(data)
with about:
#st.header("How it works")
st.markdown('''# Mockingbird TTS Demo
This page is a demo of the openly available Text to Speech models for various languages of interest. Currently, 3 synthesizers with multilingual offerings are supported out of the box:
- [**Meta's Massively Multilingual Speech (MMS)**](https://ai.meta.com/blog/multilingual-model-speech-recognition/) model, which supports over 1000 languages.[^1]
- [**IMS Toucan**](https://github.com/DigitalPhonetics/IMS-Toucan), which supports 7000 languages.[^4]
- [**ESpeak-NG's**](https://github.com/espeak-ng/espeak-ng/tree/master)'s synthetic voices**[^3]
On a case-by-case basis, for different languages of interest, I have added:
- [**Coqui's TTS**](https://docs.coqui.ai/en/latest/#) package;[^2] while no longer supported, Coqui acted as a hub for TTS model hosting and these models are still available. Languages must be added on a model-by-model basis.
- Specific fine-tuned variants of Meta's MMS (either fine-tuned by [Yoach Lacombe](https://huggingface.co/ylacombe), or fine-tuned by me using his scripts).
I am in the process of adding support for:
- [**Piper**](https://github.com/rhasspy/piper), a TTS system that supports multiple voices per language and approximately 30 languages. To test different voices, please see the [Huggingface demo](https://huggingface.co/spaces/k2-fsa/text-to-speech).[^5]
- [**African Voices**](https://github.com/neulab/AfricanVoices), a CMU research project that fine-tuned synthesizers for different African languages. The site hosting the synthesizers is deprecated but they can be downloaded from Google's Wayback Machine. [^6]
Voice conversion is currently achieved through Coqui.
Notes:
1. ESpeak-NG seems to have the worst performance out of the box, but it has a lot of options for controlling voice output.
2. Where a synthesizer supports multiple models/voices, I manually pick the appropriate model.
3. Not all synthesizers support a given language.
[^1]: Endpoints used are of the form https://huggingface.co/facebook/mms-tts-[LANG].
Learn more:
[Docs](https://huggingface.co/docs/transformers/model_doc/mms) |
[Paper](https://arxiv.org/abs/2305.13516) |
[Supported languages](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html)
[^2]: [Available models](https://github.com/coqui-ai/TTS/blob/dev/TTS/.models.json)
[^3]: [Language list](https://github.com/espeak-ng/espeak-ng/blob/master/docs/languages.md)
[^4]: Language list is available in the Gradio API documentation [here](https://huggingface.co/spaces/Flux9665/MassivelyMultilingualTTS).
[^5]: The list of available voices is [here](https://github.com/rhasspy/piper/blob/master/VOICES.md), model checkpoints are [here](https://huggingface.co/datasets/rhasspy/piper-checkpoints/tree/main), and they can be tested [here](https://rhasspy.github.io/piper-samples/).
[^6]:
''')