File size: 6,591 Bytes
5215e98
 
 
 
b6d4bd1
5215e98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6d4bd1
 
5215e98
 
b6d4bd1
 
 
 
5215e98
 
b6d4bd1
5215e98
b6d4bd1
5215e98
 
 
 
b6d4bd1
 
 
 
 
5215e98
 
b6d4bd1
5215e98
 
 
b6d4bd1
 
5215e98
 
 
 
 
b6d4bd1
5215e98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6d4bd1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import re
from typing import List, Dict
from datetime import datetime
from collections import Counter
import jieba  # For Chinese word segmentation

class FiberDBMS:
    def __init__(self):
        self.database: List[Dict[str, str]] = []
        self.content_index: Dict[str, List[int]] = {}

    def add_entry(self, name: str, content: str, tags: str) -> None:
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        entry = {
            "name": name,
            "timestamp": timestamp,
            "content": content,
            "tags": tags
        }
        self.database.append(entry)
        self._index_content(len(self.database) - 1, content)

    def _index_content(self, entry_index: int, content: str) -> None:
        words = self._tokenize(content)
        for word in words:
            if word not in self.content_index:
                self.content_index[word] = []
            self.content_index[word].append(entry_index)

    def load_or_create(self, filename: str) -> None:
        try:
            self.load_from_file(filename)
            print(f"Loaded {len(self.database)} entries from {filename}.")
        except FileNotFoundError:
            print(f"{filename} not found. Creating a new database.")

    def query(self, query: str, top_n: int) -> List[Dict[str, str]]:
        query_words = self._tokenize(query)
        matching_indices = set()
        for word in query_words:
            if word in self.content_index:
                matching_indices.update(self.content_index[word])
        
        sorted_results = sorted(
            matching_indices,
            key=lambda idx: self._rate_result(self.database[idx], query_words),
            reverse=True
        )
        
        results = []
        for idx in sorted_results[:top_n]:
            entry = self.database[idx]
            snippet = self._get_snippet(entry['content'], query_words)
            updated_tags = self._update_tags(entry['tags'], entry['content'], query_words)
            results.append({
                'name': entry['name'],
                'content': snippet,
                'tags': updated_tags,
                'index': idx
            })
        
        return results

    def save(self, filename: str) -> None:
        with open(filename, 'w', encoding='utf-8') as f:
            for entry in self.database:
                line = f"{entry['name']}\t{entry['timestamp']}\t{entry['content']}\t{entry['tags']}\n"
                f.write(line)
        print(f"Updated database saved to {filename}.")

    def _rate_result(self, entry: Dict[str, str], query_words: List[str]) -> float:
        content_tokens = self._tokenize(entry['content'])
        name_tokens = self._tokenize(entry['name'])
        tags = entry['tags'].split(',')
        
        unique_matches = sum(1 for word in set(query_words) if word in content_tokens)
        content_score = sum(content_tokens.count(word) for word in query_words)
        name_score = sum(3 for word in query_words if word in name_tokens)
        phrase_score = 5 if all(word in content_tokens for word in query_words) else 0
        unique_match_score = unique_matches * 10
        
        tag_score = sum(2 for tag in tags if any(word in self._tokenize(tag) for word in query_words))
        
        length_penalty = min(1, len(content_tokens) / 100)
        
        return (content_score + name_score + phrase_score + unique_match_score + tag_score) * length_penalty

    def _tokenize(self, text: str) -> List[str]:
        # Check if the text contains Chinese characters
        if re.search(r'[\u4e00-\u9fff]', text):
            return list(jieba.cut(text))
        else:
            return re.findall(r'\w+', text.lower())

    def _get_snippet(self, content: str, query_words: List[str], max_length: int = 200) -> str:
        content_tokens = self._tokenize(content)
        best_start = 0
        max_score = 0
        
        for i in range(len(content_tokens) - max_length):
            snippet = content_tokens[i:i+max_length]
            score = sum(snippet.count(word) * (len(word) ** 0.5) for word in query_words)
            if score > max_score:
                max_score = score
                best_start = i
        
        snippet = ''.join(content_tokens[best_start:best_start+max_length])
        return snippet + "..." if len(content) > max_length else snippet

    def _update_tags(self, original_tags: str, content: str, query_words: List[str]) -> str:
        tags = original_tags.split(',')
        original_tag = tags[0]  # Keep the first tag unchanged
        
        words = self._tokenize(content)
        word_counts = Counter(words)

        relevant_keywords = [word for word in query_words if word in word_counts and word not in tags]
        relevant_keywords += [word for word, count in word_counts.most_common(5) if word not in tags and word not in query_words]

        updated_tags = [original_tag] + tags[1:] + relevant_keywords
        return ','.join(updated_tags)

    def load_from_file(self, filename: str) -> None:
        self.database.clear()
        self.content_index.clear()
        with open(filename, 'r', encoding='utf-8') as f:
            for idx, line in enumerate(f):
                name, timestamp, content, tags = line.strip().split('\t')
                self.database.append({
                    "name": name,
                    "timestamp": timestamp,
                    "content": content,
                    "tags": tags
                })
                self._index_content(idx, content)

def main():
    dbms = FiberDBMS()
    
    # Load or create the database
    dbms.load_or_create("Celsiaaa.txt")

    while True:
        query = input("\nEnter your search query (or 'quit' to exit): ")
        if query.lower() == 'quit':
            break
        
        try:
            top_n = int(input("Enter the number of top results to display: "))
        except ValueError:
            print("Invalid input. Using default value of 5.")
            top_n = 5

        results = dbms.query(query, top_n)
        if results:
            print(f"\nTop {len(results)} results for '{query}':")
            for idx, result in enumerate(results, 1):
                print(f"\nResult {idx}:")
                print(f"Name: {result['name']}")
                print(f"Content: {result['content']}")
                print(f"Tags: {result['tags']}")
        else:
            print(f"No results found for '{query}'.")

    # Save updated database with new tags
    dbms.save("Celsiaaa.txt")

if __name__ == "__main__":
    main()