File size: 8,738 Bytes
c20f7c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import nltk
from nltk.collocations import BigramAssocMeasures, BigramCollocationFinder
from nltk.corpus import stopwords
import spacy
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from datetime import datetime, timedelta
import numpy as np
import heapq
from concurrent.futures import ThreadPoolExecutor
from annoy import AnnoyIndex
from transformers import pipeline
from rank_bm25 import BM25Okapi
from functools import partial
import ssl
try:
_create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
pass
else:
ssl._create_default_https_context = _create_unverified_https_context
nltk.download('stopwords')
nltk.download('punkt')
nlp = spacy.load('en_core_web_sm')
q = 0
def get_keywords(text, cache):
global q
if q % 1000 == 0:
print(q)
q += 1
if text in cache:
return cache[text]
doc = nlp(text)
keywords = []
for token in doc:
if token.pos_ in ['NOUN', 'PROPN', 'VERB']:
keywords.append(token.text.lower())
stop_words = set(stopwords.words('english'))
keywords = [word for word in keywords if word not in stop_words]
bigram_measures = BigramAssocMeasures()
finder = BigramCollocationFinder.from_words([token.text for token in doc])
bigrams = finder.nbest(bigram_measures.pmi, 10)
keywords.extend([' '.join(bigram) for bigram in bigrams])
cache[text] = keywords
return keywords
def calculate_weight(message, sender_messages, cache):
message_time = datetime.strptime(message[1], '%Y-%m-%d %H:%M:%S')
recent_messages = sender_messages[np.abs((np.array([datetime.strptime(m[1], '%Y-%m-%d %H:%M:%S') for m in sender_messages]) - message_time).astype('timedelta64[s]').astype(int) <= 5 * 3600)]
recent_keywords = [get_keywords(m[2], cache) for m in recent_messages]
keyword_counts = [sum([k.count(keyword) for k in recent_keywords]) for keyword in get_keywords(message[2], cache)]
weight = sum(keyword_counts)
return weight
class ChatDatabase:
def __init__(self, filename):
self.filename = filename
self.messages = []
self.messages_array = None
self.sender_array = None
self.load_messages()
self.index = None
self.tfidf = None
def load_messages(self):
with open(self.filename, 'a') as file:
pass
with open(self.filename, 'r') as f:
for line in f:
parts = line.strip().split('\t')
if len(parts) == 4:
sender, time, text, tag = parts
else:
sender, time, text = parts
tag = None
message = (sender, time, text, tag)
self.messages.append(message)
self.messages_array = np.array(self.messages, dtype=object)
self.sender_array = self.messages_array[:, 0]
print(f'Database loaded. Number of messages: {len(self.messages_array)}')
def add_message(self, sender, time, text, tag=None):
message = (sender, time, text, tag)
self.messages.append(message)
self.messages_array = np.append(self.messages_array, [message], axis=0)
self.sender_array = np.append(self.sender_array, sender)
with open(self.filename, 'a') as f:
f.write(f'{sender}\t{time}\t{text}\t{tag}\n')
def predict_response_separate(self, query, sender, cache):
if self.messages_array is None:
print("Error: messages_array is None")
return None
sender_messages = self.messages_array[self.sender_array == sender]
if len(sender_messages) == 0:
print(f"No messages found for sender: {sender}")
return None
query_keywords = ' '.join(get_keywords(query, cache))
query_vector = self.tfidf.transform([query_keywords]).toarray()[0]
relevant_indices = self.index.get_nns_by_vector(query_vector, 1)
relevant_message = sender_messages[relevant_indices[0]]
next_message_index = np.where(self.sender_array != sender)[0][0]
if next_message_index < len(self.messages_array):
predicted_response = self.messages_array[next_message_index]
return tuple(predicted_response)
else:
return None
def get_relevant_messages(self, sender, query, N, cache, query_tag=None, n_threads=30, tag_boost=1.5):
if self.messages_array is None:
print("Error: messages_array is None")
return []
query_keywords = query.lower().split()
# Filter messages by sender, tag, and keywords in a single line
if query_tag:
sender_messages = self.messages_array[
(self.sender_array == sender) &
np.array([any(keyword in message.lower() for keyword in query_keywords) for message in self.messages_array[:, 2]])
]
else:
sender_messages = self.messages_array[
(self.sender_array == sender) &
np.array([any(keyword in message.lower() for keyword in query_keywords) for message in self.messages_array[:, 2]])
]
if len(sender_messages) == 0:
print(f"No messages found for sender: {sender} with the given keywords")
return []
else:
print(len(sender_messages))
def process_batch(batch, query_keywords, current_time, query_tag):
batch_keywords = [get_keywords(message[2], cache) for message in batch]
bm25 = BM25Okapi(batch_keywords)
bm25_scores = bm25.get_scores(query_keywords)
time_scores = 1 / (1 + (current_time - np.array([datetime.strptime(m[1], '%Y-%m-%d %H:%M:%S') for m in batch])).astype('timedelta64[D]').astype(int))
tag_scores = np.where(np.array([m[3] for m in batch]) == query_tag, tag_boost, 1)
combined_scores = 0.6 * np.array(bm25_scores) + 0.2 * time_scores + 0.2 * tag_scores
return combined_scores, batch
current_time = datetime.now()
batch_size = max(1, len(sender_messages) // n_threads)
batches = [sender_messages[i:i+batch_size] for i in range(0, len(sender_messages), batch_size)]
with ThreadPoolExecutor(max_workers=n_threads) as executor:
process_func = partial(process_batch, query_keywords=query_keywords, current_time=current_time, query_tag=query_tag)
results = list(executor.map(process_func, batches))
all_scores = np.concatenate([r[0] for r in results])
all_messages = np.concatenate([r[1] for r in results])
top_indices = np.argsort(all_scores)[-N:][::-1]
relevant_messages = all_messages[top_indices]
return relevant_messages.tolist()
def generate_response(self, query, sender, cache, query_tag=None):
relevant_messages = self.get_relevant_messages(sender, query, 5, cache, query_tag)
context = ' '.join([message[2] for message in relevant_messages])
generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B')
response = generator(f'{context} {query}', max_length=100, do_sample=True)[0]['generated_text']
response = response.split(query)[-1].strip()
return response
# Usage example remains the same
'''
# Usage example
db = ChatDatabase('messages.txt')
# Example 1: Get relevant messages
query = 'Goodnight.'
sender = 'Alice'
N = 10
cache = {}
query_tag = 'evening'
relevant_messages = db.get_relevant_messages(sender, query, N, cache, query_tag)
print("Relevant messages:")
for message in relevant_messages:
print(f"Sender: {message[0]}, Time: {message[1]}, Tag: {message[3]}")
print(f"Message: {message[2][:100]}...")
print()
# Example 2: Predict response (using the original method)
query = "what was that?"
sender = 'David'
db.build_index_separate(cache)
predicted_response = db.predict_response_separate(query, sender, cache)
print("\nPredicted response:")
if predicted_response is not None:
print(f"Sender: {predicted_response[0]}, Time: {predicted_response[1]}, Tag: {predicted_response[3]}")
print(f"Message: {predicted_response[2][:100]}...")
else:
print('No predicted response found')
# Example 3: Generate response
query = "Let's plan a trip"
sender = 'Alice'
query_tag = 'travel'
generated_response = db.generate_response(query, sender, cache, query_tag)
print("\nGenerated response:")
print(generated_response)
'''
|