File size: 8,775 Bytes
b790fc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import gradio as gr
import ssl
from openai import OpenAI
import time
import os
import shutil
from datetime import datetime
import Arcana

# SSL configuration to avoid verification issues
try:
    _create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
    pass
else:
    ssl._create_default_https_context = _create_unverified_https_context


# OpenAI client setup
client = OpenAI(
    base_url='https://api.openai-proxy.org/v1',
    api_key='sk-Nxf8HmLpfIMhCd83n3TOr00TR57uBZ0jMbAgGCOzppXvlsx1',
)

# Retry logic for OpenAI API call
def openai_api_call(messages, retries=3, delay=5):
    for attempt in range(retries):
        try:
            completion = client.chat.completions.create(
                model="gpt-4o",
                messages=messages,
                timeout=10
            )
            return completion.choices[0].message.content
        except Exception as e:
            print(f"Attempt {attempt + 1} failed: {e}")
            time.sleep(delay)
    return "Sorry, I am having trouble connecting to the server. Please try again later."

# Chatbot response function
def chatbot_response(message, history):
    messages = [{"role": "system", "content": '''You are Arcana, a dynamic study resource database designed to help students excel in their exams. Your responses should be accurate, informative, and evidence-based whenever possible. Follow these guidelines:
Your primary goal is to provide students with the most helpful and accurate study information, utilizing both your internal knowledge and the PDF resources at your disposal.'''}]
    
    for human, assistant in history:
        messages.append({"role": "user", "content": human})
        messages.append({"role": "assistant", "content": assistant})
    messages.append({"role": "user", "content": message})

    response = openai_api_call(messages)

    return response

selected = None

def upload_file(file):
    foldername = 'cache'
    if not os.path.exists(foldername):
        os.mkdir(foldername)
    file_path = os.path.join(foldername, os.path.basename(file.name))
    shutil.copy(file.name, file_path)
    return list_uploaded_files()

def list_uploaded_files():
    foldername = 'cache'
    if not os.path.exists(foldername):
        return []
    files = os.listdir(foldername)
    return [[file] for file in files]

def on_select(evt: gr.SelectData):
    global selected
    selected_value = evt.value
    selected_index = evt.index
    selected = selected_value
    print(f"Selected value: {selected_value} at index: {selected_index}")
    
    file_path = os.path.join("cache", selected_value) if selected_value else None
    status_message = f"Selected: {selected_value}" if selected_value else "No file selected"
    
    file_size = get_file_size(file_path) if file_path else ""
    file_creation_time = get_file_creation_time(file_path) if file_path else ""
    
    return file_path, status_message, file_size, file_creation_time

def get_file_size(file_path):
    if file_path and os.path.exists(file_path):
        size_bytes = os.path.getsize(file_path)
        if size_bytes < 1024:
            return f"{size_bytes} bytes"
        elif size_bytes < 1024 * 1024:
            return f"{size_bytes / 1024:.2f} KB"
        else:
            return f"{size_bytes / (1024 * 1024):.2f} MB"
    return ""

def get_file_creation_time(file_path):
    if file_path and os.path.exists(file_path):
        creation_time = os.path.getctime(file_path)
        return datetime.fromtimestamp(creation_time).strftime("%Y-%m-%d %H:%M:%S")
    return ""

def delete_file():
    global selected
    if selected:
        foldername = 'cache'
        file_path = os.path.join(foldername, selected)
        if os.path.exists(file_path):
            os.remove(file_path)
            return list_uploaded_files(), None, f"File {selected} deleted successfully", "", ""
        else:
            return list_uploaded_files(), None, f"File {selected} not found", "", ""
    else:
        return list_uploaded_files(), None, "No file selected for deletion", "", ""

def refresh_files():
    return list_uploaded_files()

def display_file(evt: gr.SelectData, df):
    file_path = os.path.join("cache", evt.value)
    return file_path, file_path if file_path.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')) else None, f"Displaying: {evt.value}"

def render_to_database():
    # This function is undefined as per your request
    Arcana.main()
    

def rename_file(new_name):
    global selected
    if selected and new_name:
        old_path = os.path.join('cache', selected)
        new_path = os.path.join('cache', new_name+'.'+selected.split('.')[-1])
        if os.path.exists(old_path):
            os.rename(old_path, new_path)
            selected = new_name
            return list_uploaded_files(), f"File renamed to {new_name}", new_path, get_file_size(new_path), get_file_creation_time(new_path)
        else:
            return list_uploaded_files(), f"File {selected} not found", None, "", ""
    return list_uploaded_files(), "No file selected or new name not provided", None, "", ""

# Create the Gradio interface for the chatbot
chatbot_interface = gr.ChatInterface(
    chatbot_response,
    chatbot=gr.Chatbot(height=400),
    textbox=gr.Textbox(placeholder="Type your message here...", container=True, scale=100),
    title="Review With Arcana",
    description="ArcanaUI v0.7 - Chatbot",
    theme="soft",
    examples=[
        "What is Hydrogen Bonding?",
        "Tell me the difference between impulse and force.",
        "Tell me a joke that Calculus students will know.",
        "How should I review for the AP Biology Exam?",
        "What kind of resources are available in PA and Indexademics?",
        "What is the StandardCAS™ group?"
    ],
    cache_examples=False,
    retry_btn=None,
    undo_btn="Delete Previous",
    clear_btn="Clear"
)

# Combine the interfaces using Tabs
with gr.Blocks() as demo:
    gr.Markdown("# ArcanaUI v0.7")
    with gr.Tabs():
        with gr.TabItem("Welcome Page"):
            gr.Markdown("""
            hi
            """)

        with gr.TabItem("Chatbot"):
            chatbot_interface.render()

        # File uploading interface
        with gr.TabItem('Upload'):
            gr.Markdown('# Upload and View Files')
            
            with gr.Row():
                # Left column: File list and buttons
                with gr.Column(scale=1):
                    uploaded_files_list = gr.DataFrame(headers=["Uploaded Files"], datatype="str", interactive=False)
                    
                    with gr.Row():
                        upload_button = gr.UploadButton('Upload File')
                        refresh_button = gr.Button('Refresh')
                        delete_button = gr.Button('Delete Selected File')

                # Right column: File viewer and Image viewer
                with gr.Column(scale=1):
                    with gr.Tab("File  Viewer"):
                        file_viewer = gr.File(label="File Restore")
                        file_status = gr.Textbox(label="File Status", interactive=False)
                        file_size = gr.Textbox(label="File Size", interactive=False)
                        file_creation_time = gr.Textbox(label="File Creation Time", interactive=False)
                        
                        with gr.Row():
                            new_file_name = gr.Textbox(label="New File Name", placeholder="Enter new file name")
                            rename_button = gr.Button("Rename File")
                        
                    
                    with gr.Tab("Image Viewer"):
                        image_viewer = gr.Image(label="Image Viewer", type="filepath")
                        
            # Event handlers
            refresh_button.click(fn=refresh_files, outputs=uploaded_files_list)
            upload_button.upload(upload_file, inputs=upload_button, outputs=uploaded_files_list)
            delete_button.click(fn=delete_file, outputs=[uploaded_files_list, file_viewer, file_status, file_size, file_creation_time])
            uploaded_files_list.select(fn=display_file, inputs=uploaded_files_list, outputs=[file_viewer, image_viewer, file_status])
            uploaded_files_list.select(fn=on_select, outputs=[file_viewer, file_status, file_size, file_creation_time])
            rename_button.click(fn=rename_file, 
                                inputs=new_file_name, 
                                outputs=[uploaded_files_list, file_status, file_viewer, file_size, file_creation_time])

            render_button = gr.Button("Render all PDFs to Database")
            render_button.click(fn=render_to_database)

# Launch the interface
demo.launch(share=True)