|
import gradio as gr |
|
import ssl |
|
from openai import OpenAI |
|
import time |
|
import os |
|
import shutil |
|
from datetime import datetime |
|
import Arcana |
|
from nylon import * |
|
import pandas as pd |
|
import json |
|
import fiber |
|
|
|
|
|
foldername = 'Celsiaaa' |
|
dbmsmode = 'Fiber' |
|
|
|
try: |
|
with open('settings.arcana',mode='r') as file: |
|
foldername,dbmsmode = file.read().split('\n') |
|
except Exception as e: |
|
print(e) |
|
with open('settings.arcana',mode='w') as file: |
|
newsettings = foldername+'\n'+dbmsmode |
|
file.write(newsettings) |
|
|
|
|
|
try: |
|
_create_unverified_https_context = ssl._create_unverified_context |
|
except AttributeError: |
|
pass |
|
else: |
|
ssl._create_default_https_context = _create_unverified_https_context |
|
|
|
def query_database2(query): |
|
print(dbmsmode) |
|
if dbmsmode == 'Nylon': |
|
db = ChatDatabase(foldername+'.txt') |
|
|
|
sender = 'Arcana' |
|
N = 10 |
|
cache = {} |
|
query_tag = None |
|
|
|
relevant_messages = db.get_relevant_messages(sender, query, N, cache, query_tag) |
|
|
|
print("Relevant messages:") |
|
for message in relevant_messages: |
|
print(f"Sender: {message[0]}, Time: {message[1]}, Tag: {message[3]}") |
|
print(f"Message: {message[2][:100]}...") |
|
print() |
|
|
|
df_data = [str(message) for message in relevant_messages] |
|
return ';'.join(df_data) |
|
elif dbmsmode == 'Fiber': |
|
dbms = fiber.FiberDBMS() |
|
|
|
dbms.load_or_create(foldername+'.txt') |
|
results = dbms.query(query, 3) |
|
|
|
|
|
result_strings = [] |
|
for result in results: |
|
result_str = f"Name: {result['name']}\nContent: {result['content']}\nTags: {result['tags']}\nIndex: {result['index']}" |
|
result_strings.append(result_str) |
|
|
|
|
|
return ';'.join(result_strings) |
|
|
|
def list_files_indb(directory=foldername): |
|
""" |
|
List all files in the given directory, separated by semicolons. |
|
|
|
:param directory: The directory to list files from. Defaults to the current directory. |
|
:return: A string of filenames separated by semicolons. |
|
""" |
|
try: |
|
|
|
files = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))] |
|
|
|
|
|
return ';'.join(files) |
|
except Exception as e: |
|
return f"An error occurred: {str(e)}" |
|
|
|
search_mode = 0 |
|
|
|
|
|
|
|
client = OpenAI( |
|
base_url='https://api.openai-proxy.org/v1', |
|
api_key='sk-Nxf8HmLpfIMhCd83n3TOr00TR57uBZ0jMbAgGCOzppXvlsx1', |
|
) |
|
|
|
|
|
function_list = [ |
|
{ |
|
"name": "search_database", |
|
"description": "Query the database and return a list of results as strings", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"query": { |
|
"type": "string", |
|
"description": "The query to execute against the database" |
|
}, |
|
}, |
|
"required": ["query"] |
|
} |
|
}, |
|
|
|
{ |
|
"name": "list_database_files", |
|
"description": "Check what files are present in the database", |
|
"parameters":{ |
|
"type":"object", |
|
"properties":{ |
|
"query":{ |
|
"type":"string", |
|
"description":"Gives a list of semicolon seperated file names in the database" |
|
}, |
|
}, |
|
} |
|
} |
|
] |
|
|
|
|
|
function_map = { |
|
"search_database": query_database2, |
|
"list_database_files":list_files_indb |
|
} |
|
|
|
def execute_function(function_name, function_args): |
|
if function_name in function_map: |
|
return function_map[function_name](**function_args) |
|
else: |
|
return f"Error: Function {function_name} not found" |
|
|
|
mapsearchmode = ['always', 'auto', 'none'] |
|
|
|
def openai_api_call(messages, retries=3, delay=5): |
|
global search_mode |
|
|
|
for attempt in range(retries): |
|
try: |
|
|
|
if search_mode == 0: |
|
messages[-1]['content'] = "[System: SEARCH when the user ASKED A QUESTION & remember to CITE(the source is the first tag). Otherwise do not search];" + messages[-1]['content'] |
|
|
|
completion = client.chat.completions.create( |
|
model="gpt-3.5-turbo", |
|
messages=messages, |
|
functions=function_list, |
|
function_call='auto', |
|
timeout=10 |
|
) |
|
response_message = completion.choices[0].message |
|
|
|
|
|
if response_message.function_call: |
|
function_name = response_message.function_call.name |
|
function_args = json.loads(response_message.function_call.arguments) |
|
function_response = execute_function(function_name, function_args) |
|
|
|
messages.append(response_message.model_dump()) |
|
messages.append({ |
|
"role": "function", |
|
"name": function_name, |
|
"content": json.dumps(function_response) |
|
}) |
|
|
|
return openai_api_call(messages) |
|
else: |
|
return response_message.content |
|
|
|
except Exception as e: |
|
print(f"Attempt {attempt + 1} failed: {e}") |
|
if attempt < retries - 1: |
|
time.sleep(delay) |
|
else: |
|
return "Sorry, I am having trouble connecting to the server. Please try again later." |
|
|
|
return "Failed to get a response after multiple attempts." |
|
|
|
|
|
def handle_search_mode(mode): |
|
print(mode) |
|
global search_mode |
|
if mode == "Always": |
|
search_mode = 0 |
|
return "You are in Mode 1" |
|
elif mode == "Automatic": |
|
search_mode = 1 |
|
return "You are in Mode 2" |
|
else: |
|
search_mode = 0 |
|
return "Select a mode" |
|
|
|
def handle_dbms_mode(mode): |
|
print(mode) |
|
global dbmsmode |
|
with open('settings.arcana',mode='w') as file: |
|
newsettings = foldername+'\n'+mode |
|
file.write(newsettings) |
|
|
|
if mode == "Nylon": |
|
dbmsmode = "Nylon" |
|
return "You are in Mode 1" |
|
elif mode == "Fiber": |
|
dbmsmode = "Fiber" |
|
return "You are in Mode 2" |
|
else: |
|
search_mode = 0 |
|
return "Select a mode" |
|
|
|
|
|
def chatbot_response(message, history): |
|
messages = [{"role": "system", "content": '''You are Arcana, a dynamic study resource database designed to help students excel in their exams. Your responses should be accurate, informative, and evidence-based whenever possible. Follow these guidelines: |
|
Your primary goal is to provide students with the most helpful and accurate study information, utilizing both your internal knowledge and the PDF resources at your disposal. You will search your database for answers and properly intext cite them, unless there is no such data, then you will intextcite[Arcana].'''}] |
|
|
|
for human, assistant in history: |
|
messages.append({"role": "user", "content": human}) |
|
messages.append({"role": "assistant", "content": assistant}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = openai_api_call(messages) |
|
|
|
return response |
|
|
|
selected = None |
|
|
|
from concurrent.futures import ThreadPoolExecutor |
|
|
|
|
|
def handle_file_upload(file): |
|
|
|
cache_dir = foldername |
|
os.makedirs(cache_dir, exist_ok=True) |
|
|
|
|
|
file_path = file.name |
|
|
|
|
|
new_file_path = os.path.join(cache_dir, os.path.basename(file_path)) |
|
|
|
|
|
shutil.move(file_path, new_file_path) |
|
|
|
|
|
file_size = os.path.getsize(new_file_path) |
|
|
|
return f"File saved to {new_file_path} with size: {file_size} bytes" |
|
|
|
|
|
def handle_file_upload_threaded(file): |
|
with ThreadPoolExecutor() as executor: |
|
future = executor.submit(handle_file_upload, file) |
|
return future.result() |
|
|
|
def list_uploaded_files(): |
|
global foldername |
|
if not os.path.exists(foldername): |
|
return [] |
|
files = os.listdir(foldername) |
|
return [[file] for file in files] |
|
|
|
def on_select(evt: gr.SelectData): |
|
global selected |
|
selected_value = evt.value |
|
selected_index = evt.index |
|
selected = selected_value |
|
print(f"Selected value: {selected_value} at index: {selected_index}") |
|
|
|
file_path = os.path.join(foldername,selected_value) if selected_value else None |
|
status_message = f"Selected: {selected_value}" if selected_value else "No file selected" |
|
|
|
file_size = get_file_size(file_path) if file_path else "" |
|
file_creation_time = get_file_creation_time(file_path) if file_path else "" |
|
|
|
return file_path, status_message, file_size, file_creation_time |
|
|
|
def get_file_size(file_path): |
|
if file_path and os.path.exists(file_path): |
|
size_bytes = os.path.getsize(file_path) |
|
if size_bytes < 1024: |
|
return f"{size_bytes} bytes" |
|
elif size_bytes < 1024 * 1024: |
|
return f"{size_bytes / 1024:.2f} KB" |
|
else: |
|
return f"{size_bytes / (1024 * 1024):.2f} MB" |
|
return "" |
|
|
|
def get_file_creation_time(file_path): |
|
if file_path and os.path.exists(file_path): |
|
creation_time = os.path.getctime(file_path) |
|
return datetime.fromtimestamp(creation_time).strftime("%Y-%m-%d %H:%M:%S") |
|
return "" |
|
|
|
def delete_file(): |
|
global selected,foldername |
|
if selected: |
|
file_path = os.path.join(foldername, selected) |
|
if os.path.exists(file_path): |
|
os.remove(file_path) |
|
return list_uploaded_files(), None, f"File {selected} deleted successfully", "", "" |
|
else: |
|
return list_uploaded_files(), None, f"File {selected} not found", "", "" |
|
else: |
|
return list_uploaded_files(), None, "No file selected for deletion", "", "" |
|
|
|
def refresh_files(): |
|
return list_uploaded_files() |
|
|
|
def display_file(evt: gr.SelectData, df): |
|
file_path = os.path.join(foldername, evt.value) |
|
return file_path, file_path if file_path.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')) else None, f"Displaying: {evt.value}" |
|
|
|
def render_to_database(): |
|
|
|
Arcana.main(foldername) |
|
|
|
def change_theme(theme): |
|
gr.Interface.theme = theme |
|
|
|
def rename_file(new_name): |
|
global selected |
|
if selected and new_name: |
|
old_path = os.path.join(foldername, selected) |
|
new_path = os.path.join(foldername, new_name+'.'+selected.split('.')[-1]) |
|
if os.path.exists(old_path): |
|
os.rename(old_path, new_path) |
|
selected = new_name |
|
return list_uploaded_files(), f"File renamed to {new_name}", new_path, get_file_size(new_path), get_file_creation_time(new_path) |
|
else: |
|
return list_uploaded_files(), f"File {selected} not found", None, "", "" |
|
return list_uploaded_files(), "No file selected or new name not provided", None, "", "" |
|
|
|
def query_database(query): |
|
|
|
db = ChatDatabase(foldername+'.txt') |
|
|
|
|
|
sender = 'Arcana' |
|
N = 10 |
|
cache = {} |
|
query_tag = None |
|
|
|
relevant_messages = db.get_relevant_messages(sender, query, N, cache, query_tag) |
|
|
|
print("Relevant messages:") |
|
for message in relevant_messages: |
|
print(f"Sender: {message[0]}, Time: {message[1]}, Tag: {message[3]}") |
|
print(f"Message: {message[2][:100]}...") |
|
print() |
|
|
|
df_data = [{"Nylon Returned Query": str(message)} for message in relevant_messages] |
|
|
|
|
|
df = pd.DataFrame(df_data) |
|
|
|
return df |
|
|
|
def query_database_fiber(query): |
|
dbms = fiber.FiberDBMS() |
|
|
|
dbms.load_or_create(foldername+'.txt') |
|
results = dbms.query(query, 10) |
|
|
|
|
|
df = pd.DataFrame(results) |
|
|
|
|
|
columns_order = ['name', 'content', 'tags', 'index'] |
|
df = df[columns_order] |
|
|
|
return df |
|
|
|
def setdbname(name): |
|
global foldername |
|
foldername = name |
|
with open('settings.arcana',mode='w') as file: |
|
newsettings = foldername+'\n'+dbmsmode |
|
file.write(newsettings) |
|
|
|
example_database = [ |
|
"What is Hydrogen Bonding?", |
|
"Tell me the difference between impulse and force.", |
|
"Tell me a joke that Calculus students will understand.", |
|
"How should I review for the AP Biology Exam?", |
|
"What kind of resources are available in PA and Indexademics?", |
|
"What is the StandardCAS™ group?", |
|
"Explain the concept of quantum entanglement.", |
|
"What are the main differences between mitosis and meiosis?", |
|
"How does the Doppler effect work?", |
|
"Explain the process of photosynthesis.", |
|
"What is the significance of the Pythagorean theorem?", |
|
"How does natural selection contribute to evolution?", |
|
"What is the most important chapter in AP Statistics?", |
|
"How should I prepare on the IB Chinese Exam?" |
|
] |
|
|
|
import random |
|
|
|
def get_random_examples(num_examples=5): |
|
return random.sample(example_database, min(num_examples, len(example_database))) |
|
|
|
|
|
chatbot_interface = gr.ChatInterface( |
|
chatbot_response, |
|
chatbot=gr.Chatbot(height=400), |
|
textbox=gr.Textbox(placeholder="Type your message here...", container=False, scale=100), |
|
title="Review With Arcana", |
|
description="ArcanaUI v0.8 - Chatbot", |
|
theme="default", |
|
examples=get_random_examples(), |
|
cache_examples=False, |
|
retry_btn=gr.Button('Retry'), |
|
undo_btn="Delete Previous", |
|
clear_btn="Clear", |
|
) |
|
|
|
def chatbot_response(message): |
|
|
|
return f"Response to: {message}" |
|
|
|
def relaunch(): |
|
global demo |
|
demo.close() |
|
demo.launch(share=True) |
|
|
|
|
|
with gr.Blocks(js=""" |
|
async () => { |
|
const originalFetch = window.fetch; |
|
window.fetch = (url, options) => { |
|
if (options && options.signal) { |
|
const controller = new AbortController(); |
|
options.signal = controller.signal; |
|
setTimeout(() => controller.abort(), 3600000); // 300000 ms = 5 minutes |
|
} |
|
return originalFetch(url, options); |
|
}; |
|
} |
|
""") as demo: |
|
gr.Markdown("# ArcanaUI v0.8") |
|
with gr.Tabs(): |
|
with gr.TabItem("Welcome Page"): |
|
with open('introduction.txt',mode='r') as file: |
|
intro_content = file.read() |
|
gr.Markdown(intro_content) |
|
|
|
with gr.TabItem("Chatbot"): |
|
chatbot_interface.render() |
|
|
|
|
|
with gr.TabItem('Upload'): |
|
gr.Markdown('# Upload and View Files') |
|
|
|
with gr.Row(): |
|
|
|
|
|
with gr.Column(scale=1): |
|
gr.Markdown("## Upload File") |
|
file_input = gr.File(label="Upload your file here", file_types=["pdf", "jpeg", "jpg", "gif", "docx"]) |
|
file_input.change(handle_file_upload_threaded, inputs=file_input) |
|
|
|
uploaded_files_list = gr.DataFrame(headers=["Uploaded Files"], datatype="str", interactive=False) |
|
|
|
with gr.Row(): |
|
refresh_button = gr.Button('Refresh') |
|
delete_button = gr.Button('Delete Selected File') |
|
|
|
|
|
|
|
with gr.Column(scale=1): |
|
with gr.Tab("File Viewer"): |
|
file_viewer = gr.File(label="File Restore") |
|
file_status = gr.Textbox(label="File Status", interactive=False) |
|
file_size = gr.Textbox(label="File Size", interactive=False) |
|
file_creation_time = gr.Textbox(label="File Creation Time", interactive=False) |
|
|
|
with gr.Row(): |
|
new_file_name = gr.Textbox(label="New File Name", placeholder="Enter new file name") |
|
rename_button = gr.Button("Rename File") |
|
|
|
|
|
with gr.Tab("Image Viewer"): |
|
image_viewer = gr.Image(label="Image Viewer", type="filepath") |
|
|
|
|
|
|
|
|
|
refresh_button.click(fn=refresh_files, outputs=uploaded_files_list) |
|
delete_button.click(fn=delete_file, outputs=[uploaded_files_list, file_viewer, file_status, file_size, file_creation_time]) |
|
uploaded_files_list.select(fn=display_file, inputs=uploaded_files_list, outputs=[file_viewer, image_viewer, file_status]) |
|
uploaded_files_list.select(fn=on_select, outputs=[file_viewer, file_status, file_size, file_creation_time]) |
|
rename_button.click(fn=rename_file, |
|
inputs=new_file_name, |
|
outputs=[uploaded_files_list, file_status, file_viewer, file_size, file_creation_time]) |
|
|
|
render_button = gr.Button("Render all PDFs to Database") |
|
render_button.click(fn=render_to_database) |
|
|
|
with gr.TabItem('Settings'): |
|
with gr.TabItem('Database'): |
|
gr.Markdown('Settings') |
|
|
|
test_nylon = gr.Textbox(label='Test Nylon', placeholder='Query') |
|
uploaded_files_list2 = gr.DataFrame(headers=["Nylon Returned Query"], datatype="str", interactive=False) |
|
query_button2 = gr.Button('Query') |
|
query_button2.click(fn=query_database, inputs=test_nylon, outputs=uploaded_files_list2) |
|
|
|
test_fiber = gr.Textbox(label='Test Fiber', placeholder='Query') |
|
uploaded_files_list3 = gr.DataFrame(headers=["Fiber Returned Query"], datatype="str", interactive=False) |
|
query_button3 = gr.Button('Query') |
|
query_button3.click(fn=query_database_fiber, inputs=test_fiber, outputs=uploaded_files_list3) |
|
|
|
gr.Markdown('Nylon 2.1 will be deprecated in text-text selections, as it is built for image-text selections.\nDefault model is Fiber.') |
|
dbmsmode_selector = gr.Radio(["Nylon", "Fiber"], label="Select Model") |
|
dbmsmode_selector.change(handle_dbms_mode, dbmsmode_selector) |
|
|
|
database_name = gr.Textbox(label='Database Name', placeholder='cache') |
|
set_dbname = gr.Button('Set Database Name') |
|
set_dbname.click(fn=setdbname, inputs=database_name) |
|
|
|
with gr.TabItem('Theme'): |
|
gr.Markdown('Change Theme') |
|
|
|
theme_dropdown = gr.Dropdown(choices=['default', 'compact', 'huggingface', 'soft', 'dark'], label='Choose Theme') |
|
theme_button = gr.Button('Apply Theme') |
|
|
|
theme_button.click(fn=change_theme, inputs=theme_dropdown) |
|
relaunch_button = gr.Button('Relaunch') |
|
relaunch_button.click(fn=relaunch) |
|
with gr.TabItem('Search'): |
|
gr.Markdown('Set Search Modes') |
|
|
|
searchmode_selector = gr.Radio(["Always", "Automatic"], label="Select Mode") |
|
output = gr.Textbox(label="Output") |
|
searchmode_selector.change(handle_search_mode, searchmode_selector, output) |
|
|
|
|
|
|
|
demo.launch(share=True) |
|
|
|
|
|
|
|
|