Arcana / ArcanaUI2.py
Ocillus's picture
Update ArcanaUI2.py
bbb6d2f verified
raw
history blame
10.2 kB
import gradio as gr
import ssl
from openai import OpenAI
import time
import os
import shutil
from datetime import datetime
import Arcana
# SSL configuration to avoid verification issues
try:
_create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
pass
else:
ssl._create_default_https_context = _create_unverified_https_context
# OpenAI client setup
client = OpenAI(
base_url='https://api.openai-proxy.org/v1',
api_key='sk-Nxf8HmLpfIMhCd83n3TOr00TR57uBZ0jMbAgGCOzppXvlsx1',
)
# Retry logic for OpenAI API call
def openai_api_call(messages, retries=3, delay=5):
for attempt in range(retries):
try:
completion = client.chat.completions.create(
model="gpt-4o",
messages=messages,
timeout=10
)
return completion.choices[0].message.content
except Exception as e:
print(f"Attempt {attempt + 1} failed: {e}")
time.sleep(delay)
return "Sorry, I am having trouble connecting to the server. Please try again later."
# Chatbot response function
def chatbot_response(message, history):
messages = [{"role": "system", "content": '''You are Arcana, a dynamic study resource database designed to help students excel in their exams. Your responses should be accurate, informative, and evidence-based whenever possible. Follow these guidelines:
Your primary goal is to provide students with the most helpful and accurate study information, utilizing both your internal knowledge and the PDF resources at your disposal.'''}]
for human, assistant in history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
response = openai_api_call(messages)
return response
selected = None
def upload_file(file):
foldername = 'cache'
if not os.path.exists(foldername):
os.mkdir(foldername)
file_path = os.path.join(foldername, os.path.basename(file.name))
shutil.copy(file.name, file_path)
return list_uploaded_files()
def list_uploaded_files():
foldername = 'cache'
if not os.path.exists(foldername):
return []
files = os.listdir(foldername)
return [[file] for file in files]
def on_select(evt: gr.SelectData):
global selected
selected_value = evt.value
selected_index = evt.index
selected = selected_value
print(f"Selected value: {selected_value} at index: {selected_index}")
file_path = os.path.join("cache", selected_value) if selected_value else None
status_message = f"Selected: {selected_value}" if selected_value else "No file selected"
file_size = get_file_size(file_path) if file_path else ""
file_creation_time = get_file_creation_time(file_path) if file_path else ""
return file_path, status_message, file_size, file_creation_time
def get_file_size(file_path):
if file_path and os.path.exists(file_path):
size_bytes = os.path.getsize(file_path)
if size_bytes < 1024:
return f"{size_bytes} bytes"
elif size_bytes < 1024 * 1024:
return f"{size_bytes / 1024:.2f} KB"
else:
return f"{size_bytes / (1024 * 1024):.2f} MB"
return ""
def get_file_creation_time(file_path):
if file_path and os.path.exists(file_path):
creation_time = os.path.getctime(file_path)
return datetime.fromtimestamp(creation_time).strftime("%Y-%m-%d %H:%M:%S")
return ""
def delete_file():
global selected
if selected:
foldername = 'cache'
file_path = os.path.join(foldername, selected)
if os.path.exists(file_path):
os.remove(file_path)
return list_uploaded_files(), None, f"File {selected} deleted successfully", "", ""
else:
return list_uploaded_files(), None, f"File {selected} not found", "", ""
else:
return list_uploaded_files(), None, "No file selected for deletion", "", ""
def refresh_files():
return list_uploaded_files()
def display_file(evt: gr.SelectData, df):
file_path = os.path.join("cache", evt.value)
return file_path, file_path if file_path.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')) else None, f"Displaying: {evt.value}"
def render_to_database():
# This function is undefined as per your request
Arcana.main()
def rename_file(new_name):
global selected
if selected and new_name:
old_path = os.path.join('cache', selected)
new_path = os.path.join('cache', new_name+'.'+selected.split('.')[-1])
if os.path.exists(old_path):
os.rename(old_path, new_path)
selected = new_name
return list_uploaded_files(), f"File renamed to {new_name}", new_path, get_file_size(new_path), get_file_creation_time(new_path)
else:
return list_uploaded_files(), f"File {selected} not found", None, "", ""
return list_uploaded_files(), "No file selected or new name not provided", None, "", ""
# Create the Gradio interface for the chatbot
chatbot_interface = gr.ChatInterface(
chatbot_response,
chatbot=gr.Chatbot(height=400),
textbox=gr.Textbox(placeholder="Type your message here...", container=True, scale=100),
title="Review With Arcana",
description="ArcanaUI v0.7 - Chatbot",
theme="soft",
examples=[
"What is Hydrogen Bonding?",
"Tell me the difference between impulse and force.",
"Tell me a joke that Calculus students will know.",
"How should I review for the AP Biology Exam?",
"What kind of resources are available in PA and Indexademics?",
"What is the StandardCAS™ group?"
],
cache_examples=False,
retry_btn=None,
undo_btn="Delete Previous",
clear_btn="Clear"
)
# Combine the interfaces using Tabs
with gr.Blocks() as demo:
gr.Markdown("# ArcanaUI v0.7")
with gr.Tabs():
with gr.TabItem("Welcome Page"):
gr.Markdown("""
# Welcome to ArcanaUI v0.7 by the Indexademics Team
Program Base Powered by StandardCAS™
## Introduction
Welcome to Arcana, your dynamic study resource database! Our goal is to help students like you excel in your exams by providing quick and accurate answers to your study questions.
## How to Use
- Navigate to the 'Chatbot' tab to ask your study-related questions.
- Type your question into the textbox and press Enter.
- The chatbot will respond with helpful information.
- Use the 'Delete Previous' button to remove the last interaction or 'Clear' to reset the chat.
## Works Cited
Below is a sample citation in BibTeX format:
```
@article{Fan2023CELSIA,
title={CELSIA-Nylon},
author={Chengjui Fan},
journal={Conf-MLA 2023},
year={2023},
volume={NAN},
number={NAN},
pages={NAN},
publisher={Conf-MLA}
}
@misc{Indexademics,
title={indexademics Chatbot},
author={NAN},
journal={SHSID},
year={2024},
volume={NAN},
number={NAN},
pages={NAN},
publisher={Peer Advisor(PA) SHSID}
}
```
""")
with gr.TabItem("Chatbot"):
chatbot_interface.render()
# File uploading interface
with gr.TabItem('Upload'):
gr.Markdown('# Upload and View Files')
with gr.Row():
# Left column: File list and buttons
with gr.Column(scale=1):
uploaded_files_list = gr.DataFrame(headers=["Uploaded Files"], datatype="str", interactive=False)
with gr.Row():
upload_button = gr.UploadButton('Upload File')
refresh_button = gr.Button('Refresh')
delete_button = gr.Button('Delete Selected File')
# Right column: File viewer and Image viewer
with gr.Column(scale=1):
with gr.Tab("File Viewer"):
file_viewer = gr.File(label="File Restore")
file_status = gr.Textbox(label="File Status", interactive=False)
file_size = gr.Textbox(label="File Size", interactive=False)
file_creation_time = gr.Textbox(label="File Creation Time", interactive=False)
with gr.Row():
new_file_name = gr.Textbox(label="New File Name", placeholder="Enter new file name")
rename_button = gr.Button("Rename File")
with gr.Tab("Image Viewer"):
image_viewer = gr.Image(label="Image Viewer", type="filepath")
# Event handlers
refresh_button.click(fn=refresh_files, outputs=uploaded_files_list)
upload_button.upload(upload_file, inputs=upload_button, outputs=uploaded_files_list)
delete_button.click(fn=delete_file, outputs=[uploaded_files_list, file_viewer, file_status, file_size, file_creation_time])
uploaded_files_list.select(fn=display_file, inputs=uploaded_files_list, outputs=[file_viewer, image_viewer, file_status])
uploaded_files_list.select(fn=on_select, outputs=[file_viewer, file_status, file_size, file_creation_time])
rename_button.click(fn=rename_file,
inputs=new_file_name,
outputs=[uploaded_files_list, file_status, file_viewer, file_size, file_creation_time])
render_button = gr.Button("Render all PDFs to Database")
render_button.click(fn=render_to_database)
# Launch the interface
demo.launch(share=True)