QuickDraw-Small / app.py
Om-Alve
Renamed run.py to app.py
16c6723
labels = ['aircraft carrier',
'airplane',
'alarm clock',
'ambulance',
'angel',
'animal migration',
'ant',
'anvil',
'apple',
'arm',
'asparagus',
'axe',
'backpack',
'banana',
'bandage',
'barn',
'baseball bat',
'baseball',
'basket',
'basketball',
'bat',
'bathtub',
'beach',
'bear',
'beard',
'bed',
'bee',
'belt',
'bench',
'bicycle',
'binoculars',
'bird',
'birthday cake',
'blackberry',
'blueberry',
'book',
'boomerang',
'bottlecap',
'bowtie',
'bracelet',
'brain',
'bread',
'bridge',
'broccoli',
'broom',
'bucket',
'bulldozer',
'bus',
'bush',
'butterfly',
'cactus',
'cake',
'calculator',
'calendar',
'camel',
'camera',
'camouflage',
'campfire',
'candle',
'cannon',
'canoe',
'car',
'carrot',
'castle',
'cat',
'ceiling fan',
'cell phone',
'cello',
'chair',
'chandelier',
'church',
'circle',
'clarinet',
'clock',
'cloud',
'coffee cup',
'compass',
'computer',
'cookie',
'cooler',
'couch',
'cow',
'crab',
'crayon',
'crocodile',
'crown',
'cruise ship',
'cup',
'diamond',
'dishwasher',
'diving board',
'dog',
'dolphin',
'donut',
'door',
'dragon',
'dresser',
'drill',
'drums',
'duck',
'dumbbell',
'ear',
'elbow',
'elephant',
'envelope',
'eraser',
'eye',
'eyeglasses',
'face',
'fan',
'feather',
'fence',
'finger',
'fire hydrant',
'fireplace',
'firetruck',
'fish',
'flamingo',
'flashlight',
'flip flops',
'floor lamp',
'flower',
'flying saucer',
'foot',
'fork',
'frog',
'frying pan',
'garden hose',
'garden',
'giraffe',
'goatee',
'golf club',
'grapes',
'grass',
'guitar',
'hamburger',
'hammer',
'hand',
'harp',
'hat',
'headphones',
'hedgehog',
'helicopter',
'helmet',
'hexagon',
'hockey puck',
'hockey stick',
'horse',
'hospital',
'hot air balloon',
'hot dog',
'hot tub',
'hourglass',
'house plant',
'house',
'hurricane',
'ice cream',
'jacket',
'jail',
'kangaroo',
'key',
'keyboard',
'knee',
'knife',
'ladder',
'lantern',
'laptop',
'leaf',
'leg',
'light bulb',
'lighter',
'lighthouse',
'lightning',
'line',
'lion',
'lipstick',
'lobster',
'lollipop',
'mailbox',
'map',
'marker',
'matches',
'megaphone',
'mermaid',
'microphone',
'microwave',
'monkey',
'moon',
'mosquito',
'motorbike',
'mountain',
'mouse',
'moustache',
'mouth',
'mug',
'mushroom',
'nail',
'necklace',
'nose',
'ocean',
'octagon',
'octopus',
'onion',
'oven',
'owl',
'paint can',
'paintbrush',
'palm tree',
'panda',
'pants',
'paper clip',
'parachute',
'parrot',
'passport',
'peanut',
'pear',
'peas',
'pencil',
'penguin',
'piano',
'pickup truck',
'picture frame',
'pig',
'pillow',
'pineapple',
'pizza',
'pliers',
'police car',
'pond',
'pool',
'popsicle',
'postcard',
'potato',
'power outlet',
'purse',
'rabbit',
'raccoon',
'radio',
'rain',
'rainbow',
'rake',
'remote control',
'rhinoceros',
'rifle',
'river',
'roller coaster',
'rollerskates',
'sailboat',
'sandwich',
'saw',
'saxophone',
'school bus',
'scissors',
'scorpion',
'screwdriver',
'sea turtle',
'see saw',
'shark',
'sheep',
'shoe',
'shorts',
'shovel',
'sink',
'skateboard',
'skull',
'skyscraper',
'sleeping bag',
'smiley face',
'snail',
'snake',
'snorkel',
'snowflake',
'snowman',
'soccer ball',
'sock',
'speedboat',
'spider',
'spoon',
'spreadsheet',
'square',
'squiggle',
'squirrel',
'stairs',
'star',
'steak',
'stereo',
'stethoscope',
'stitches',
'stop sign',
'stove',
'strawberry',
'streetlight',
'string bean',
'submarine',
'suitcase',
'sun',
'swan',
'sweater',
'swing set',
'sword',
'syringe',
't-shirt',
'table',
'teapot',
'teddy-bear',
'telephone',
'television',
'tennis racquet',
'tent',
'The Eiffel Tower',
'The Great Wall of China',
'The Mona Lisa',
'tiger',
'toaster',
'toe',
'toilet',
'tooth',
'toothbrush',
'toothpaste',
'tornado',
'tractor',
'traffic light',
'train',
'tree',
'triangle',
'trombone',
'truck',
'trumpet',
'umbrella',
'underwear',
'van',
'vase',
'violin',
'washing machine',
'watermelon',
'waterslide',
'whale',
'wheel',
'windmill',
'wine bottle',
'wine glass',
'wristwatch',
'yoga',
'zebra',
'zigzag']
from PIL import Image
import numpy as np
import tensorflow as tf
imgs = []
def predict(img):
img = img['layers'][0][:,:,3]
imgs.append(img)
image_pil = Image.fromarray(img)
# Resize the image using PIL
new_size = (28, 28) # Set the new size (e.g., 100x100)
resized_image_pil = image_pil.resize(new_size)
# Convert the resized PIL image back to a NumPy array
resized_image_np = np.array(resized_image_pil)
# imgs.append(img)
img = np.array(resized_image_np).reshape(1, 28, 28,1)
out = model.predict(img);
top5 = np.argsort(out[0])[::-1][:5]
label = labels
# Create a dictionary with label-probability pairs for the top 5 predictions
probabilities = {label[i]: float(out[0][i]) for i in top5}
return probabilities
model = tf.keras.models.load_model('quickdraw.h5', compile=False)
import gradio as gr
gr.Interface(fn=predict,
inputs=gr.Sketchpad(),
outputs="label",
live=True).launch()