Spaces:
Sleeping
Sleeping
File size: 3,226 Bytes
d012df7 98687c5 d012df7 98687c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import timm
from PIL import Image
from torchvision import transforms as T
import gradio as gr
import torch
model = timm.create_model("hf_hub:OmAlve/swin_s3_base_224-Foods-101", pretrained=True)
image_size = (224,224)
test_tf = T.Compose([
T.Resize(image_size),
T.ToTensor(),
T.Normalize(
mean = (0.5,0.5,0.5),
std = (0.5,0.5,0.5)
)
])
labels = [
"apple_pie",
"baby_back_ribs",
"baklava",
"beef_carpaccio",
"beef_tartare",
"beet_salad",
"beignets",
"bibimbap",
"bread_pudding",
"breakfast_burrito",
"bruschetta",
"caesar_salad",
"cannoli",
"caprese_salad",
"carrot_cake",
"ceviche",
"cheesecake",
"cheese_plate",
"chicken_curry",
"chicken_quesadilla",
"chicken_wings",
"chocolate_cake",
"chocolate_mousse",
"churros",
"clam_chowder",
"club_sandwich",
"crab_cakes",
"creme_brulee",
"croque_madame",
"cup_cakes",
"deviled_eggs",
"donuts",
"dumplings",
"edamame",
"eggs_benedict",
"escargots",
"falafel",
"filet_mignon",
"fish_and_chips",
"foie_gras",
"french_fries",
"french_onion_soup",
"french_toast",
"fried_calamari",
"fried_rice",
"frozen_yogurt",
"garlic_bread",
"gnocchi",
"greek_salad",
"grilled_cheese_sandwich",
"grilled_salmon",
"guacamole",
"gyoza",
"hamburger",
"hot_and_sour_soup",
"hot_dog",
"huevos_rancheros",
"hummus",
"ice_cream",
"lasagna",
"lobster_bisque",
"lobster_roll_sandwich",
"macaroni_and_cheese",
"macarons",
"miso_soup",
"mussels",
"nachos",
"omelette",
"onion_rings",
"oysters",
"pad_thai",
"paella",
"pancakes",
"panna_cotta",
"peking_duck",
"pho",
"pizza",
"pork_chop",
"poutine",
"prime_rib",
"pulled_pork_sandwich",
"ramen",
"ravioli",
"red_velvet_cake",
"risotto",
"samosa",
"sashimi",
"scallops",
"seaweed_salad",
"shrimp_and_grits",
"spaghetti_bolognese",
"spaghetti_carbonara",
"spring_rolls",
"steak",
"strawberry_shortcake",
"sushi",
"tacos",
"takoyaki",
"tiramisu",
"tuna_tartare",
"waffles"
]
def predict(img):
inp = test_tf(img).unsqueeze(0)
with torch.no_grad():
predictions = torch.nn.functional.softmax(model(inp)[0], dim=0)
toplabels = predictions.argsort(descending=True)[:5]
results = {labels[label] : float(predictions[label]) for label in toplabels}
return results
description = """
This is a space for Image Classfication using a Swin Transformer finetuned on the Food101 dataset with Timm and 🤗.
You can find the model [here](https://huggingface.co/OmAlve/swin_s3_base_224-Foods-101)
And the Notebook for finetuning [here](https://github.com/Om-Alve/Finetuning-CV-model/blob/main/Swin-Foods-101.ipynb)
"""
gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs="label",
examples=['./miso soup.jpg','./cupcake.jpg','./pasta.jpg'],
title="Food Classification with Swin Transformers",
description=description,
live=True).launch() |