Spaces:
Running
Running
OmPrakashSingh1704
commited on
Commit
·
368e60b
1
Parent(s):
10a04a8
app.py
CHANGED
@@ -56,12 +56,17 @@ with gr.Blocks() as demo:
|
|
56 |
)
|
57 |
|
58 |
with gr.TabItem("Edit your Banner"):
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
61 |
prompt = gr.Textbox(label="Enter the text to get a good start")
|
62 |
out_img=gr.Image()
|
63 |
btn = gr.Button()
|
64 |
-
btn.click(Banner.Image2Image, [prompt,
|
65 |
|
66 |
with gr.TabItem("Upgrade your Banner"):
|
67 |
img = gr.Image()
|
|
|
56 |
)
|
57 |
|
58 |
with gr.TabItem("Edit your Banner"):
|
59 |
+
input_image_editor_component = gr.ImageEditor(
|
60 |
+
label='Image',
|
61 |
+
type='pil',
|
62 |
+
sources=["upload", "webcam"],
|
63 |
+
image_mode='RGB',
|
64 |
+
layers=False,
|
65 |
+
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
66 |
prompt = gr.Textbox(label="Enter the text to get a good start")
|
67 |
out_img=gr.Image()
|
68 |
btn = gr.Button()
|
69 |
+
btn.click(Banner.Image2Image, [prompt,input_image_editor_component], out_img)
|
70 |
|
71 |
with gr.TabItem("Upgrade your Banner"):
|
72 |
img = gr.Image()
|
options/Banner_Model/Image2Image.py
CHANGED
@@ -7,66 +7,150 @@ from .transformer_flux import FluxTransformer2DModel
|
|
7 |
from .pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
|
8 |
|
9 |
|
10 |
-
|
11 |
-
print(f"Using device for I2I: {
|
12 |
|
13 |
-
# Load the inpainting pipeline
|
14 |
|
15 |
-
def resize_image(image, height, width):
|
16 |
-
|
17 |
-
|
18 |
|
19 |
|
20 |
-
def dummy(img):
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
|
29 |
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
result = pipe(
|
59 |
-
prompt=
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
generator=generator,
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from .pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
|
8 |
|
9 |
|
10 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
print(f"Using device for I2I: {DEVICE}")
|
12 |
|
13 |
+
# # Load the inpainting pipeline
|
14 |
|
15 |
+
# def resize_image(image, height, width):
|
16 |
+
# """Resize image tensor to the desired height and width."""
|
17 |
+
# return torch.nn.functional.interpolate(image, size=(height, width), mode='nearest')
|
18 |
|
19 |
|
20 |
+
# def dummy(img):
|
21 |
+
# """Save the composite image and generate a mask from the alpha channel."""
|
22 |
+
# imageio.imwrite("output_image.png", img["composite"])
|
23 |
|
24 |
+
# # Extract alpha channel from the first layer to create the mask
|
25 |
+
# alpha_channel = img["layers"][0][:, :, 3]
|
26 |
+
# mask = np.where(alpha_channel == 0, 0, 255).astype(np.uint8)
|
27 |
|
28 |
+
# return img["background"], mask
|
29 |
|
30 |
+
def resize_image_dimensions(
|
31 |
+
original_resolution_wh: Tuple[int, int],
|
32 |
+
maximum_dimension: int = IMAGE_SIZE
|
33 |
+
) -> Tuple[int, int]:
|
34 |
+
width, height = original_resolution_wh
|
35 |
|
36 |
+
# if width <= maximum_dimension and height <= maximum_dimension:
|
37 |
+
# width = width - (width % 32)
|
38 |
+
# height = height - (height % 32)
|
39 |
+
# return width, height
|
40 |
+
|
41 |
+
if width > height:
|
42 |
+
scaling_factor = maximum_dimension / width
|
43 |
+
else:
|
44 |
+
scaling_factor = maximum_dimension / height
|
45 |
+
|
46 |
+
new_width = int(width * scaling_factor)
|
47 |
+
new_height = int(height * scaling_factor)
|
48 |
+
|
49 |
+
new_width = new_width - (new_width % 32)
|
50 |
+
new_height = new_height - (new_height % 32)
|
51 |
+
|
52 |
+
return new_width, new_height
|
53 |
+
|
54 |
+
|
55 |
+
# @spaces.GPU(duration=100)
|
56 |
+
def I2I(
|
57 |
+
input_image_editor: dict,
|
58 |
+
input_text: str,
|
59 |
+
seed_slicer: int=42,
|
60 |
+
randomize_seed_checkbox: bool=True,
|
61 |
+
strength_slider: float=0.85,
|
62 |
+
num_inference_steps_slider: int=20,
|
63 |
+
progress=gr.Progress(track_tqdm=True)):
|
64 |
+
pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
65 |
+
if not input_text:
|
66 |
+
gr.Info("Please enter a text prompt.")
|
67 |
+
return None, None
|
68 |
+
|
69 |
+
image = input_image_editor['background']
|
70 |
+
mask = input_image_editor['layers'][0]
|
71 |
+
|
72 |
+
if not image:
|
73 |
+
gr.Info("Please upload an image.")
|
74 |
+
return None, None
|
75 |
+
|
76 |
+
if not mask:
|
77 |
+
gr.Info("Please draw a mask on the image.")
|
78 |
+
return None, None
|
79 |
+
|
80 |
+
width, height = resize_image_dimensions(original_resolution_wh=image.size)
|
81 |
+
resized_image = image.resize((width, height), Image.LANCZOS)
|
82 |
+
resized_mask = mask.resize((width, height), Image.LANCZOS)
|
83 |
+
|
84 |
+
if randomize_seed_checkbox:
|
85 |
+
seed_slicer = random.randint(0, MAX_SEED)
|
86 |
+
generator = torch.Generator().manual_seed(seed_slicer)
|
87 |
result = pipe(
|
88 |
+
prompt=input_text,
|
89 |
+
image=resized_image,
|
90 |
+
mask_image=resized_mask,
|
91 |
+
width=width,
|
92 |
+
height=height,
|
93 |
+
strength=strength_slider,
|
94 |
generator=generator,
|
95 |
+
num_inference_steps=num_inference_steps_slider
|
96 |
+
).images[0]
|
97 |
+
print('INFERENCE DONE')
|
98 |
+
return result
|
99 |
+
|
100 |
+
def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
|
101 |
+
image = image.convert("RGBA")
|
102 |
+
data = image.getdata()
|
103 |
+
new_data = []
|
104 |
+
for item in data:
|
105 |
+
avg = sum(item[:3]) / 3
|
106 |
+
if avg < threshold:
|
107 |
+
new_data.append((0, 0, 0, 0))
|
108 |
+
else:
|
109 |
+
new_data.append(item)
|
110 |
+
|
111 |
+
image.putdata(new_data)
|
112 |
+
return image
|
113 |
+
|
114 |
+
|
115 |
+
# def I2I(prompt, image, width=1024, height=1024, guidance_scale=8.0, num_inference_steps=20, strength=0.99):
|
116 |
+
|
117 |
+
# controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha", torch_dtype=torch.bfloat16)
|
118 |
+
# transformer = FluxTransformer2DModel.from_pretrained(
|
119 |
+
# "black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dytpe=torch.bfloat16
|
120 |
+
# )
|
121 |
+
# pipe = FluxControlNetInpaintingPipeline.from_pretrained(
|
122 |
+
# "black-forest-labs/FLUX.1-dev",
|
123 |
+
# controlnet=controlnet,
|
124 |
+
# transformer=transformer,
|
125 |
+
# torch_dtype=torch.bfloat16
|
126 |
+
# ).to(device)
|
127 |
+
# pipe.transformer.to(torch.bfloat16)
|
128 |
+
# pipe.controlnet.to(torch.bfloat16)
|
129 |
+
# pipe.set_attn_processor(FluxAttnProcessor2_0())
|
130 |
+
|
131 |
+
|
132 |
+
# img_url, mask = dummy(image)
|
133 |
+
|
134 |
+
# # Resize image and mask to the target dimensions (height x width)
|
135 |
+
# img_url = Image.fromarray(img_url, mode="RGB").resize((width, height))
|
136 |
+
# mask_url = Image.fromarray(mask,mode="L").resize((width, height))
|
137 |
+
|
138 |
+
# # Make sure both image and mask are converted into correct tensors
|
139 |
+
# generator = torch.Generator(device=device).manual_seed(0)
|
140 |
+
|
141 |
+
# # Generate the inpainted image
|
142 |
+
# result = pipe(
|
143 |
+
# prompt=prompt,
|
144 |
+
# height=size[1],
|
145 |
+
# width=size[0],
|
146 |
+
# control_image=image,
|
147 |
+
# control_mask=mask,
|
148 |
+
# num_inference_steps=28,
|
149 |
+
# generator=generator,
|
150 |
+
# controlnet_conditioning_scale=0.9,
|
151 |
+
# guidance_scale=3.5,
|
152 |
+
# negative_prompt="",
|
153 |
+
# true_guidance_scale=3.5
|
154 |
+
# ).images[0]
|
155 |
+
|
156 |
+
# return result
|
options/Banner_Model/Text2Banner.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from huggingface_hub import InferenceClient
|
2 |
import torch
|
3 |
-
device="cuda" torch.cuda.is_available() else "cpu"
|
4 |
def T2I(prompt, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28):
|
5 |
# Initialize the model client
|
6 |
model = InferenceClient(model="black-forest-labs/FLUX.1-dev").to(device)
|
|
|
1 |
from huggingface_hub import InferenceClient
|
2 |
import torch
|
3 |
+
device="cuda" if torch.cuda.is_available() else "cpu"
|
4 |
def T2I(prompt, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28):
|
5 |
# Initialize the model client
|
6 |
model = InferenceClient(model="black-forest-labs/FLUX.1-dev").to(device)
|
options/Banner_Model/__pycache__/__init__.cpython-310.pyc
CHANGED
Binary files a/options/Banner_Model/__pycache__/__init__.cpython-310.pyc and b/options/Banner_Model/__pycache__/__init__.cpython-310.pyc differ
|
|
options/__pycache__/Banner.cpython-310.pyc
CHANGED
Binary files a/options/__pycache__/Banner.cpython-310.pyc and b/options/__pycache__/Banner.cpython-310.pyc differ
|
|