OmPrakashSingh1704 commited on
Commit
5063f38
·
1 Parent(s): 9c0918a
Files changed (1) hide show
  1. options/Banner_Model/Image2Image_2.py +24 -31
options/Banner_Model/Image2Image_2.py CHANGED
@@ -1,34 +1,27 @@
1
- # import spaces
2
- # import torch
3
- # from controlnet_aux import LineartDetector
4
- # from diffusers import ControlNetModel,UniPCMultistepScheduler,StableDiffusionControlNetPipeline
5
- # from PIL import Image
6
 
7
- # device= "cuda" if torch.cuda.is_available() else "cpu"
8
- # print("Using device for I2I_2:", device)
9
 
10
- # @spaces.GPU(duration=100)
11
- # def I2I_2(image, prompt,size,num_inference_steps,guidance_scale):
12
- # processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
13
-
14
- # checkpoint = "ControlNet-1-1-preview/control_v11p_sd15_lineart"
15
- # controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(device)
16
- # pipe = StableDiffusionControlNetPipeline.from_pretrained(
17
- # "radames/stable-diffusion-v1-5-img2img", controlnet=controlnet, torch_dtype=torch.float16
18
- # ).to(device)
19
- # pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
20
- # pipe.enable_model_cpu_offload()
21
- # if not isinstance(image, Image.Image):
22
- # image = Image.fromarray(image)
23
- # image.resize((size,size))
24
- # image=processor(image)
25
- # generator = torch.Generator(device=device).manual_seed(0)
26
- # image = pipe(prompt+"best quality, extremely detailed", num_inference_steps=num_inference_steps, generator=generator, image=image,negative_prompt="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",guidance_scale=guidance_scale).images[0]
27
- # return image
28
-
29
- from gradio_client import Client
30
  def I2I_2(image, prompt,size,num_inference_steps,guidance_scale):
31
- client = Client("https://hysts-controlnet-v1-1.hf.space/")
32
- res=client.predict([image,prompt,"best quality, extremely detailed","longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",1,size,size,num_inference_steps,guidance_scale,0,"Lineart","/lineart"])
33
- print(res)
34
- return res
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import torch
3
+ from controlnet_aux import LineartDetector
4
+ from diffusers import ControlNetModel,UniPCMultistepScheduler,StableDiffusionControlNetPipeline
5
+ from PIL import Image
6
 
7
+ device= "cuda" if torch.cuda.is_available() else "cpu"
8
+ print("Using device for I2I_2:", device)
9
 
10
+ @spaces.GPU(duration=100)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  def I2I_2(image, prompt,size,num_inference_steps,guidance_scale):
12
+ processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
13
+
14
+ checkpoint = "ControlNet-1-1-preview/control_v11p_sd15_lineart"
15
+ controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(device)
16
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
17
+ "radames/stable-diffusion-v1-5-img2img", controlnet=controlnet, torch_dtype=torch.float16
18
+ ).to(device)
19
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
20
+ pipe.enable_model_cpu_offload()
21
+ if not isinstance(image, Image.Image):
22
+ image = Image.fromarray(image)
23
+ image.resize((size,size))
24
+ image=processor(image)
25
+ generator = torch.Generator(device=device).manual_seed(0)
26
+ image = pipe(prompt+"best quality, extremely detailed", num_inference_steps=num_inference_steps, generator=generator, image=image,negative_prompt="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",guidance_scale=guidance_scale).images[0]
27
+ return image