File size: 7,785 Bytes
8d020c9
6cc79fe
f978815
6cc79fe
 
 
 
 
 
 
 
 
 
ec1c755
 
6cc79fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
841b395
6cc79fe
 
ec1c755
 
 
 
 
 
 
 
6cc79fe
 
 
 
 
841b395
 
6cc79fe
 
 
 
 
841b395
6cc79fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import random
import logging

import torch
from torch.cuda.amp import autocast as autocast
import torch.nn as nn

from .blip2 import Blip2Base, disabled_train
from .modeling_llama import LlamaForCausalLM
from transformers import LlamaTokenizer, LlamaConfig




class VideoChat(Blip2Base):
    """
    VideoChat model.
    """
    def __init__(self, config):
        super().__init__()

        vit_model = config.get("vit_model", "eva_clip_g")
        vit_model_path = config.get("vit_model_path", None)
        q_former_model_path = config.get("q_former_model_path", None)
        llama_model_path = config.get("llama_model_path")
        videochat_model_path = config.get("videochat_model_path", "")  
        img_size = config.get("img_size")

        drop_path_rate = config.get("drop_path_rate", 0)
        use_grad_checkpoint = config.get("use_grad_checkpoint", False)
        vit_precision = config.get("vit_precision", "fp16")
        freeze_vit = config.get("freeze_vit", True)
        freeze_qformer = config.get("freeze_qformer", True)
        low_resource = config.get("low_resource", False) # use 8 bit and put vit in cpu
        max_txt_len = config.get("max_txt_len", 32)

        # uniformerv2
        freeze_mhra = config.get("freeze_mhra", False)
        temporal_downsample = config.get("temporal_downsample", True)
        no_lmhra = config.get("no_lmhra", False)
        double_lmhra = config.get("double_lmhra", False)
        lmhra_reduction = config.get("lmhra_reduction", 2.0)
        gmhra_layers = config.get("gmhra_layers", 8)
        gmhra_drop_path_rate = config.get("gmhra_drop_path_rate", 0.)
        gmhra_dropout = config.get("gmhra_dropout", 0.5)
        # qformer
        num_query_token = config.get("num_query_token")
        extra_num_query_token = config.get("extra_num_query_token", 64)

        self.tokenizer = self.init_tokenizer()
        self.low_resource = low_resource

        self.vit_precision = vit_precision
        print(f'Loading VIT. Use fp16: {vit_precision}')
        self.visual_encoder, self.ln_vision = self.init_vision_encoder(
            vit_model, img_size, drop_path_rate, 
            use_grad_checkpoint, vit_precision, vit_model_path,
            temporal_downsample=temporal_downsample,
            no_lmhra=no_lmhra, 
            double_lmhra=double_lmhra,
            lmhra_reduction=lmhra_reduction, 
            gmhra_layers=gmhra_layers, 
            gmhra_drop_path_rate=gmhra_drop_path_rate,
            gmhra_dropout=gmhra_dropout, 
        )
        if freeze_vit:
            print("freeze vision encoder")
            if not freeze_mhra:
                open_list = []
                for name, param in self.visual_encoder.named_parameters():
                    if 'mhra' not in name:
                        param.requires_grad = False
                    else:
                        open_list.append(name)
                print(f"open module: {open_list}")
                print("open ln_vision")
            else:
                for name, param in self.visual_encoder.named_parameters():
                    param.requires_grad = False
                self.visual_encoder = self.visual_encoder.eval()
                self.visual_encoder.train = disabled_train
                for name, param in self.ln_vision.named_parameters():
                    param.requires_grad = False
                self.ln_vision = self.ln_vision.eval()
                self.ln_vision.train = disabled_train
        print('Loading VIT Done')

        print('Loading Q-Former')
        self.Qformer, self.query_tokens = self.init_Qformer(
            num_query_token, self.visual_encoder.num_features,
        )
        self.Qformer.cls = None
        self.Qformer.bert.embeddings.word_embeddings = None
        self.Qformer.bert.embeddings.position_embeddings = None
        for layer in self.Qformer.bert.encoder.layer:
            layer.output = None
            layer.intermediate = None
        self.load_from_pretrained(model_path=q_former_model_path)
        print(f"Add extra {extra_num_query_token} tokens in QFormer")
        self.extra_query_tokens = nn.Parameter(
            torch.zeros(1, extra_num_query_token, self.query_tokens.shape[-1])
        )

        if freeze_qformer:
            print("freeze Qformer")
            for name, param in self.Qformer.named_parameters():
                param.requires_grad = False
            self.Qformer = self.Qformer.eval()
            self.Qformer.train = disabled_train
            self.query_tokens.requires_grad = False
        print('Loading Q-Former Done')

        print('Loading LLAMA')
        self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model_path, use_fast=False, use_auth_token=os.environ["HF_TOKEN"])
        self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token

        import psutil
        import os
        print(u'ε½“ε‰θΏ›η¨‹ηš„ε†…ε­˜δ½Ώη”¨οΌš%.4f GB' % (psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024 / 1024) )
        info = psutil.virtual_memory()
        print( u'η”΅θ„‘ζ€»ε†…ε­˜οΌš%.4f GB' % (info.total / 1024 / 1024 / 1024) )
        print(u'ε½“ε‰δ½Ώη”¨ηš„ζ€»ε†…ε­˜ε ζ―”οΌš',info.percent)
        print(u'cpuδΈͺζ•°οΌš',psutil.cpu_count())

        if self.low_resource:
                self.llama_model = LlamaForCausalLM.from_pretrained(
                    llama_model_path,
                    torch_dtype=torch.float16,
                    load_in_8bit=True,
                    device_map="auto",
                    use_auth_token=os.environ["HF_TOKEN"],
                )
        else:
                self.llama_model = LlamaForCausalLM.from_pretrained(
                    llama_model_path,
                    torch_dtype=torch.float16,
                    use_auth_token=os.environ["HF_TOKEN"],
                )

        print("freeze LLAMA")
        for name, param in self.llama_model.named_parameters():
            param.requires_grad = False
        print('Loading LLAMA Done')

        self.llama_proj = nn.Linear(
            self.Qformer.config.hidden_size, self.llama_model.config.hidden_size
        )
        self.max_txt_len = max_txt_len

        # load weights of VideoChat
        if videochat_model_path:
            print(f"Load VideoChat from: {videochat_model_path}")
            ckpt = torch.load(videochat_model_path, map_location="cpu")
            msg = self.load_state_dict(ckpt['model'], strict=False)
            print(msg)

    def vit_to_cpu(self):
        self.ln_vision.to("cpu")
        self.ln_vision.float()
        self.visual_encoder.to("cpu")
        self.visual_encoder.float()

    def encode_img(self, image):
        device = image.device
        if self.low_resource:
            self.vit_to_cpu()
            image = image.to("cpu")

        with self.maybe_autocast():
            T = image.shape[1]
            # use_image = True if T == 1 else False
            image = image.permute(0, 2, 1, 3, 4) # [B,T,C,H,W] -> [B,C,T,H,W]

            image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
            image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)

            query_tokens = torch.cat([self.query_tokens, self.extra_query_tokens], dim=1)
            query_tokens = query_tokens.expand(image_embeds.shape[0], -1, -1)
            query_output = self.Qformer.bert(
                query_embeds=query_tokens,
                encoder_hidden_states=image_embeds,
                encoder_attention_mask=image_atts,
                return_dict=True,
            )

            inputs_llama = self.llama_proj(query_output.last_hidden_state)
            atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
        return inputs_llama, atts_llama