eliphatfs commited on
Commit
cbdb77e
·
1 Parent(s): e628f3f

Thread safety.

Browse files
Files changed (1) hide show
  1. app.py +15 -7
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import sys
 
2
  import streamlit as st
3
  from huggingface_hub import HfFolder, snapshot_download
4
 
@@ -21,12 +22,16 @@ import transformers
21
  from PIL import Image
22
 
23
  @st.cache_resource
24
- def load_openshape(name):
25
- return openshape.load_pc_encoder(name)
 
 
 
26
 
27
 
28
  @st.cache_resource
29
  def load_openclip():
 
30
  return transformers.CLIPModel.from_pretrained(
31
  "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
32
  low_cpu_mem_usage=True, torch_dtype=half,
@@ -38,7 +43,7 @@ f32 = numpy.float32
38
  half = torch.float16 if torch.cuda.is_available() else torch.bfloat16
39
  # clip_model, clip_prep = None, None
40
  clip_model, clip_prep = load_openclip()
41
- model_b32 = load_openshape('openshape-pointbert-vitb32-rgb').cpu()
42
  model_l14 = load_openshape('openshape-pointbert-vitl14-rgb')
43
  model_g14 = load_openshape('openshape-pointbert-vitg14-rgb')
44
  torch.set_grad_enabled(False)
@@ -187,17 +192,19 @@ def demo_pc2img():
187
  col2 = misc_utils.render_pc(pc)
188
  prog.progress(0.49, "Running Generation")
189
  if torch.cuda.is_available():
190
- clip_model.cpu()
 
191
  img = sd_pc2img.pc_to_image(
192
  model_l14, pc, prompt, noise_scale, width, height, cfg_scale, steps,
193
  lambda i, t, _: prog.progress(0.49 + i / (steps + 1) / 2, "Running Diffusion Step %d" % i)
194
  )
195
  if torch.cuda.is_available():
196
- clip_model.cuda()
 
197
  with col2:
198
  st.image(img)
199
  prog.progress(1.0, "Idle")
200
- if image_examples(samples_index.sd, 3):
201
  queue_auto_submit("sdauto")
202
 
203
 
@@ -285,7 +292,8 @@ def demo_retrieval():
285
 
286
  try:
287
  if torch.cuda.is_available():
288
- clip_model.cuda()
 
289
  with tab_cls:
290
  demo_classification()
291
  with tab_cap:
 
1
  import sys
2
+ import threading
3
  import streamlit as st
4
  from huggingface_hub import HfFolder, snapshot_download
5
 
 
22
  from PIL import Image
23
 
24
  @st.cache_resource
25
+ def load_openshape(name, to_cpu=False):
26
+ pce = openshape.load_pc_encoder(name)
27
+ if to_cpu:
28
+ pce = pce.cpu()
29
+ return pce
30
 
31
 
32
  @st.cache_resource
33
  def load_openclip():
34
+ sys.clip_move_lock = threading.Lock()
35
  return transformers.CLIPModel.from_pretrained(
36
  "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
37
  low_cpu_mem_usage=True, torch_dtype=half,
 
43
  half = torch.float16 if torch.cuda.is_available() else torch.bfloat16
44
  # clip_model, clip_prep = None, None
45
  clip_model, clip_prep = load_openclip()
46
+ model_b32 = load_openshape('openshape-pointbert-vitb32-rgb', True)
47
  model_l14 = load_openshape('openshape-pointbert-vitl14-rgb')
48
  model_g14 = load_openshape('openshape-pointbert-vitg14-rgb')
49
  torch.set_grad_enabled(False)
 
192
  col2 = misc_utils.render_pc(pc)
193
  prog.progress(0.49, "Running Generation")
194
  if torch.cuda.is_available():
195
+ with sys.clip_move_lock:
196
+ clip_model.cpu()
197
  img = sd_pc2img.pc_to_image(
198
  model_l14, pc, prompt, noise_scale, width, height, cfg_scale, steps,
199
  lambda i, t, _: prog.progress(0.49 + i / (steps + 1) / 2, "Running Diffusion Step %d" % i)
200
  )
201
  if torch.cuda.is_available():
202
+ with sys.clip_move_lock:
203
+ clip_model.cuda()
204
  with col2:
205
  st.image(img)
206
  prog.progress(1.0, "Idle")
207
+ if image_examples(samples_index.sd, 3, example_text="Examples (Choose one of the following 3D shapes)"):
208
  queue_auto_submit("sdauto")
209
 
210
 
 
292
 
293
  try:
294
  if torch.cuda.is_available():
295
+ with sys.clip_move_lock:
296
+ clip_model.cuda()
297
  with tab_cls:
298
  demo_classification()
299
  with tab_cap: