Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,959 Bytes
0203722 6210885 0203722 788a499 1fa352f 0203722 6210885 0203722 6210885 0203722 292c2fc 0203722 0b57247 a67873a 0203722 292c2fc 915b86a 0b57247 4b8ea71 f52a712 0203722 788a499 0203722 292c2fc 915b86a 0b57247 0203722 f52a712 0203722 292c2fc de943de 3daaddd 915b86a 788a499 0203722 3daaddd 0203722 3daaddd 0322abf de943de f52a712 3daaddd 0322abf 0203722 de943de f52a712 3daaddd de943de 3daaddd de943de 3daaddd 0203722 3daaddd 0203722 3daaddd 0203722 3daaddd 0203722 3daaddd 0203722 3daaddd 0203722 3daaddd 0322abf f52a712 de943de 3daaddd 0203722 0322abf 0203722 0322abf 0203722 0322abf 0203722 0322abf 0203722 a67873a 4b8ea71 a67873a 4b8ea71 a67873a 4b8ea71 a67873a 4927550 3daaddd 4927550 9457d94 4927550 3daaddd 4927550 3daaddd 4927550 3daaddd 4927550 cc9b589 4927550 3daaddd 4927550 de943de 4927550 3daaddd 915b86a 4927550 3daaddd 0203722 97bf543 0203722 788a499 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import os
import re
from num2words import num2words
import gradio as gr
import torch
import torchaudio
from data.tokenizer import (
AudioTokenizer,
TextTokenizer,
)
from edit_utils_en import parse_edit_en
from edit_utils_en import parse_tts_en
from inference_scale import inference_one_sample
import librosa
import soundfile as sf
from models import ssr
import io
import numpy as np
import random
import uuid
import opencc
import spaces
import nltk
nltk.download('punkt')
DEMO_PATH = os.getenv("DEMO_PATH", "./demo")
TMP_PATH = os.getenv("TMP_PATH", "./demo/temp")
MODELS_PATH = os.getenv("MODELS_PATH", "./pretrained_models")
device = "cuda" if torch.cuda.is_available() else "cpu"
def get_random_string():
return "".join(str(uuid.uuid4()).split("-"))
@spaces.GPU
def seed_everything(seed):
if seed != -1:
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def get_mask_interval(transcribe_state, word_span):
print(transcribe_state)
seg_num = len(transcribe_state['segments'])
data = []
for i in range(seg_num):
words = transcribe_state['segments'][i]['words']
for item in words:
data.append([item['start'], item['end'], item['word']])
s, e = word_span[0], word_span[1]
assert s <= e, f"s:{s}, e:{e}"
assert s >= 0, f"s:{s}"
assert e <= len(data), f"e:{e}"
if e == 0: # start
start = 0.
end = float(data[0][0])
elif s == len(data): # end
start = float(data[-1][1])
end = float(data[-1][1]) # don't know the end yet
elif s == e: # insert
start = float(data[s-1][1])
end = float(data[s][0])
else:
start = float(data[s-1][1]) if s > 0 else float(data[s][0])
end = float(data[e][0]) if e < len(data) else float(data[-1][1])
return (start, end)
from whisperx import load_align_model, load_model, load_audio
from whisperx import align as align_func
ssrspeech_model_name = "English"
text_tokenizer = TextTokenizer(backend="espeak")
language = "en"
transcribe_model_name = "base.en"
ssrspeech_fn = f"{MODELS_PATH}/{ssrspeech_model_name}.pth"
if not os.path.exists(ssrspeech_fn):
os.system(f"wget https://huggingface.co/westbrook/SSR-Speech-{ssrspeech_model_name}/resolve/main/{ssrspeech_model_name}.pth -O " + ssrspeech_fn)
ckpt = torch.load(ssrspeech_fn)
model = ssr.SSR_Speech(ckpt["config"])
model.load_state_dict(ckpt["model"])
config = model.args
phn2num = ckpt["phn2num"]
model.to(device)
encodec_fn = f"{MODELS_PATH}/wmencodec.th"
if not os.path.exists(encodec_fn):
os.system(f"wget https://huggingface.co/westbrook/SSR-Speech-English/resolve/main/wmencodec.th -O " + encodec_fn)
ssrspeech_model = {
"config": config,
"phn2num": phn2num,
"model": model,
"text_tokenizer": text_tokenizer,
"audio_tokenizer": AudioTokenizer(signature=encodec_fn)
}
def get_transcribe_state(segments):
transcript = " ".join([segment["text"] for segment in segments])
transcript = transcript[1:] if transcript[0] == " " else transcript
return {
"segments": segments,
"transcript": transcript,
}
@spaces.GPU
def transcribe(audio_path):
transcribe_model = load_model(transcribe_model_name, device, asr_options={"suppress_numerals": True, "max_new_tokens": None, "clip_timestamps": None, "hallucination_silence_threshold": None}, language=language)
segments = transcribe_model.transcribe(audio_path, batch_size=8)["segments"]
for segment in segments:
segment['text'] = replace_numbers_with_words(segment['text'])
_, segments = align(segments, audio_path)
state = get_transcribe_state(segments)
success_message = "<span style='color:green;'>Success: Transcribe completed successfully!</span>"
return [
state["transcript"], state['segments'],
state, success_message
]
@spaces.GPU
def align(segments, audio_path):
align_model, metadata = load_align_model(language_code=language, device=device)
audio = load_audio(audio_path)
segments = align_func(segments, align_model, metadata, audio, device, return_char_alignments=False)["segments"]
state = get_transcribe_state(segments)
return state, segments
def get_output_audio(audio_tensors, codec_audio_sr):
result = torch.cat(audio_tensors, 1)
buffer = io.BytesIO()
torchaudio.save(buffer, result, int(codec_audio_sr), format="wav")
buffer.seek(0)
return buffer.read()
def replace_numbers_with_words(sentence):
sentence = re.sub(r'(\d+)', r' \1 ', sentence) # add spaces around numbers
def replace_with_words(match):
num = match.group(0)
try:
return num2words(num) # Convert numbers to words
except:
return num # In case num2words fails (unlikely with digits but just to be safe)
return re.sub(r'\b\d+\b', replace_with_words, sentence) # Regular expression that matches numbers
@spaces.GPU
def run(seed, sub_amount, codec_audio_sr, codec_sr, top_k, top_p, temperature,
stop_repetition, kvcache, silence_tokens, aug_text, cfg_coef, prompt_length,
audio_path, original_transcript, transcript, mode):
aug_text = True if aug_text == 1 else False
if ssrspeech_model is None:
raise gr.Error("ssrspeech model not loaded")
seed_everything(seed)
# resample audio
audio, _ = librosa.load(audio_path, sr=16000)
sf.write(audio_path, audio, 16000)
# text normalization
target_transcript = replace_numbers_with_words(transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
orig_transcript = replace_numbers_with_words(original_transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
[orig_transcript, segments, _, _] = transcribe(audio_path)
orig_transcript = orig_transcript.lower()
target_transcript = target_transcript.lower()
transcribe_state,_ = align(segments, audio_path)
print(orig_transcript)
print(target_transcript)
if mode == "TTS":
info = torchaudio.info(audio_path)
duration = info.num_frames / info.sample_rate
cut_length = duration
# Cut long audio for tts
if duration > prompt_length:
seg_num = len(transcribe_state['segments'])
for i in range(seg_num):
words = transcribe_state['segments'][i]['words']
for item in words:
if item['end'] >= prompt_length:
cut_length = min(item['end'], cut_length)
audio, _ = librosa.load(audio_path, sr=16000, duration=cut_length)
sf.write(audio_path, audio, 16000)
[orig_transcript, segments, _, _] = transcribe(audio_path)
orig_transcript = orig_transcript.lower()
target_transcript = target_transcript.lower()
transcribe_state,_ = align(segments, audio_path)
print(orig_transcript)
target_transcript_copy = target_transcript # for tts cut out
target_transcript_copy = target_transcript_copy.split(' ')[0]
target_transcript = orig_transcript + ' ' + target_transcript
print(target_transcript)
if mode == "Edit":
operations, orig_spans = parse_edit_en(orig_transcript, target_transcript)
print(operations)
print("orig_spans: ", orig_spans)
if len(orig_spans) > 3:
raise gr.Error("Current model only supports maximum 3 editings")
starting_intervals = []
ending_intervals = []
for orig_span in orig_spans:
start, end = get_mask_interval(transcribe_state, orig_span)
starting_intervals.append(start)
ending_intervals.append(end)
print("intervals: ", starting_intervals, ending_intervals)
info = torchaudio.info(audio_path)
audio_dur = info.num_frames / info.sample_rate
def combine_spans(spans, threshold=0.2):
spans.sort(key=lambda x: x[0])
combined_spans = []
current_span = spans[0]
for i in range(1, len(spans)):
next_span = spans[i]
if current_span[1] >= next_span[0] - threshold:
current_span[1] = max(current_span[1], next_span[1])
else:
combined_spans.append(current_span)
current_span = next_span
combined_spans.append(current_span)
return combined_spans
morphed_span = [[max(start - sub_amount, 0), min(end + sub_amount, audio_dur)]
for start, end in zip(starting_intervals, ending_intervals)] # in seconds
morphed_span = combine_spans(morphed_span, threshold=0.2)
print("morphed_spans: ", morphed_span)
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
else:
info = torchaudio.info(audio_path)
audio_dur = info.num_frames / info.sample_rate
morphed_span = [(audio_dur, audio_dur)] # in seconds
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
print("mask_interval: ", mask_interval)
decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
tts = True if mode == "TTS" else False
new_audio = inference_one_sample(
ssrspeech_model["model"],
ssrspeech_model["config"],
ssrspeech_model["phn2num"],
ssrspeech_model["text_tokenizer"],
ssrspeech_model["audio_tokenizer"],
audio_path, orig_transcript, target_transcript, mask_interval,
cfg_coef, aug_text, False, True, tts,
device, decode_config
)
audio_tensors = []
# save segments for comparison
new_audio = new_audio[0].cpu()
torchaudio.save(audio_path, new_audio, codec_audio_sr)
if tts: # remove the start parts
[new_transcript, new_segments, _, _] = transcribe(audio_path)
transcribe_state,_ = align(new_segments, audio_path)
tmp1 = transcribe_state['segments'][0]['words'][0]['word'].lower()
tmp2 = target_transcript_copy.lower()
if tmp1 == tmp2:
offset = transcribe_state['segments'][0]['words'][0]['start']
else:
offset = transcribe_state['segments'][0]['words'][1]['start']
new_audio, _ = torchaudio.load(audio_path, frame_offset=int(offset*codec_audio_sr))
audio_tensors.append(new_audio)
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
success_message = "<span style='color:green;'>Success: Inference successfully!</span>"
return output_audio, success_message
demo_original_transcript = "Gwynplain had besides for his work and for his feats of strength, round his neck and over his shoulders, an esclavine of leather."
demo_text = {
"TTS": {
"regular": "Gwynplain had besides for his work and for his feats of strength, I cannot believe that the same model can also do text to speech synthesis too!"
},
"Edit": {
"regular": "Gwynplain had besides for his work and feats of strength, hanging from his neck and shoulders, an esclavine of leather."
},
}
def get_app():
with gr.Blocks() as app:
gr.Markdown("""
# SSR-Speech: High-quality Speech Editor and Text-to-Speech Synthesizer
Generate and edit speech from text. Adjust advanced settings for more control.
Learn more about 🟣**SSR-Speech** on the [SSR-Speech Homepage](https://wanghelin1997.github.io/SSR-Speech-Demo/).
🚀 The **SSR-Speech (Mandarin)** demo is now live! Try it on [🤗SSR-Speech-Mandarin Space](https://huggingface.co/spaces/OpenSound/SSR-Speech-Mandarin).
""")
with gr.Row():
with gr.Column(scale=2):
input_audio = gr.Audio(value=f"{DEMO_PATH}/5895_34622_000026_000002.wav", label="Input Audio", type="filepath", interactive=True)
with gr.Group():
original_transcript = gr.Textbox(label="Original transcript", lines=5, value=demo_original_transcript,
info="Use whisperx model to get the transcript.")
transcribe_btn = gr.Button(value="Transcribe")
with gr.Column(scale=3):
with gr.Group():
transcript = gr.Textbox(label="Text", lines=7, value=demo_text["Edit"]["regular"])
with gr.Row():
mode = gr.Radio(label="Mode", choices=["Edit", "TTS"], value="Edit")
run_btn = gr.Button(value="Run")
with gr.Column(scale=2):
output_audio = gr.Audio(label="Output Audio")
with gr.Row():
with gr.Accordion("Generation Parameters - change these if you are unhappy with the generation", open=False):
stop_repetition = gr.Radio(label="stop_repetition", choices=[-1, 1, 2, 3, 4], value=2,
info="if there are long silence in the generated audio, reduce the stop_repetition to 2 or 1. -1 = disabled")
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
kvcache = gr.Radio(label="kvcache", choices=[0, 1], value=1,
info="set to 0 to use less VRAM, but with slower inference")
aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1,
info="set to 1 to use cfg")
cfg_coef = gr.Number(label="cfg_coef", value=1.5,
info="cfg guidance scale, 1.5 is a good value, change if you don't like the results")
prompt_length = gr.Number(label="prompt_length", value=3,
info="used for tts prompt, will automatically cut the prompt audio to this length")
sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment, change if you don't like the results")
top_p = gr.Number(label="top_p", value=0.8, info="0.9 is a good value, 0.8 is also good")
temperature = gr.Number(label="temperature", value=1, info="haven't try other values, do not change")
top_k = gr.Number(label="top_k", value=0, info="0 means we don't use topk sampling, because we use topp sampling")
codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000, info='encodec specific, do not change')
codec_sr = gr.Number(label="codec_sr", value=50, info='encodec specific, do not change')
silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]", info="encodec specific, do not change")
success_output = gr.HTML()
semgents = gr.State() # not used
transcribe_btn.click(fn=transcribe,
inputs=[input_audio],
outputs=[original_transcript, semgents, success_output])
run_btn.click(fn=run,
inputs=[
seed, sub_amount,
codec_audio_sr, codec_sr,
top_k, top_p, temperature, stop_repetition, kvcache, silence_tokens,
aug_text, cfg_coef, prompt_length,
input_audio, original_transcript, transcript,
mode
],
outputs=[output_audio, success_output])
return app
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Ssrspeech gradio app.")
parser.add_argument("--demo-path", default="./demo", help="Path to demo directory")
parser.add_argument("--tmp-path", default="./demo/temp", help="Path to tmp directory")
parser.add_argument("--models-path", default="./pretrained_models", help="Path to ssrspeech models directory")
parser.add_argument("--port", default=7860, type=int, help="App port")
parser.add_argument("--share", action="store_true", help="Launch with public url")
os.environ["USER"] = os.getenv("USER", "user")
args = parser.parse_args()
DEMO_PATH = args.demo_path
TMP_PATH = args.tmp_path
MODELS_PATH = args.models_path
app = get_app()
app.queue().launch(share=args.share, server_port=args.port) |