Spaces:
Running
on
Zero
Running
on
Zero
File size: 38,349 Bytes
f5b4ff2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
# @ [email protected]
import random
import numpy as np
import logging
import argparse, copy
from typing import Dict, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchmetrics.classification import MulticlassAccuracy
from .modules.utils import make_pad_mask
from .modules.embedding import SinePositionalEmbedding, TokenEmbedding
from .modules.transformer import (
LayerNorm,
TransformerEncoder,
TransformerEncoderLayer,
)
from huggingface_hub import PyTorchModelHubMixin
from argparse import Namespace
import typing as tp
def top_k_top_p_filtering(
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
):
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
top_k = min(
max(top_k, min_tokens_to_keep), logits.size(-1)
) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(
F.softmax(sorted_logits, dim=-1), dim=-1
)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
..., :-1
].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(
1, sorted_indices, sorted_indices_to_remove
)
logits[indices_to_remove] = filter_value
return logits
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
# temperature: (`optional`) float
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
# top_k: (`optional`) int
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
# top_p: (`optional`) float
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
# Temperature (higher temperature => more likely to sample low probability tokens)
if temperature != 1.0:
logits = logits / temperature
# Top-p/top-k filtering
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
# Sample
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
return token
class SSR_Speech(
nn.Module,
PyTorchModelHubMixin,
library_name="ssr_speech",
repo_url=None,
tags=None,
):
def __new__(cls, args: Optional[Namespace] = None, config: Optional[Dict] = None, **kwargs) -> "SSR_Speech":
# If initialized from Namespace args => convert to dict config for 'PyTorchModelHubMixin' to serialize it as config.json
# Won't affect instance initialization
if args is not None:
if config is not None:
raise ValueError("Cannot provide both `args` and `config`.")
config = vars(args)
return super().__new__(cls, args=args, config=config, **kwargs)
def __init__(self, args: Optional[Namespace] = None, config: Optional[Dict] = None):
super().__init__()
# If loaded from HF Hub => convert config.json to Namespace args before initializing
if args is None:
if config is None:
raise ValueError("Either `args` or `config` must be provided.")
args = Namespace(**config)
self.args = copy.copy(args)
if not getattr(self.args, "n_special", False):
self.args.n_special = 3
self.args.eos = getattr(self.args, "eos", -1)
if isinstance(self.args.audio_vocab_size, str):
self.args.audio_vocab_size = eval(self.args.audio_vocab_size)
self.n_text_tokens = self.args.text_vocab_size + 1
assert self.args.text_pad_token == self.args.text_vocab_size, f"self.args.text_vocab_size: {self.args.text_vocab_size}, self.args.text_pad_token: {self.args.text_pad_token}"
self.n_audio_tokens = [int(self.args.audio_vocab_size) + self.args.n_special + self.args.max_n_spans] * self.args.n_codebooks # special tokens: empty token, EOG token, audio pad token, mask tokens
assert self.args.audio_vocab_size == self.args.empty_token, self.args.empty_token
assert self.args.eog == self.args.audio_vocab_size + 1, self.args.eog
assert self.args.audio_pad_token == self.args.audio_vocab_size + 2, self.args.audio_pad_token
assert self.args.eos == self.args.audio_vocab_size + 3, self.args.eos
assert self.args.sos == self.args.audio_vocab_size + 4, self.args.sos
assert self.args.mts == self.args.audio_vocab_size + 5, self.args.mts
self.text_embedding = TokenEmbedding(
dim_model=self.args.d_model,
vocab_size=self.n_text_tokens,
dropout=self.args.text_embedding_dropout
)
self.audio_embedding = nn.ModuleList(
[
TokenEmbedding(
dim_model=self.args.audio_embedding_dim,
vocab_size=self.n_audio_tokens[k],
dropout=self.args.audio_embedding_dropout
) for k in range(self.args.n_codebooks)
]
)
self.text_positional_embedding = SinePositionalEmbedding(
self.args.d_model,
dropout=self.args.text_positional_embedding_dropout,
scale=False,
alpha=True, # learnable scaler, scale the volume of positional embedding
)
self.audio_positional_embedding = SinePositionalEmbedding(
self.args.d_model,
dropout=self.args.audio_positional_embedding_dropout,
scale=False,
alpha=True, # learnable scaler, scale the volume of positional embedding
)
dec_layer = TransformerEncoderLayer(
self.args.d_model,
self.args.nhead,
dim_feedforward=self.args.d_model * 4,
dropout=self.args.trm_dropout,
batch_first=True,
norm_first=True,
layer_norm_cls=LayerNorm
)
self.decoder = TransformerEncoder(
dec_layer,
num_layers=self.args.num_decoder_layers,
norm=LayerNorm(self.args.d_model),
)
self.predict_layer = nn.ModuleList(
[
nn.Sequential(nn.Linear(self.args.d_model, self.args.audio_vocab_size//2), nn.GELU(), nn.Linear(self.args.audio_vocab_size//2, self.n_audio_tokens[k])) for k in range(self.args.n_codebooks)
]
)
self.accuracy_metrics = nn.ModuleList(
[MulticlassAccuracy(
self.n_audio_tokens[k],
top_k=10,
average="micro",
multidim_average="global",
ignore_index=None,
) for k in range(self.args.n_codebooks)]
)
def embed_y(self, cated_y):
# [K,T,B]
embedded_y = torch.stack([self.audio_embedding[k](cated_y[k]) for k in range(self.args.n_codebooks)], dim=0) # [K, T, B, D]
assert embedded_y.shape[0] == self.args.n_codebooks, embedded_y.shape
assert embedded_y.shape[-1] == self.args.d_model, embedded_y.shape
embedded_y = embedded_y.sum(dim=0) # [K,T,B,D]->[T,B,D]
embedded_y = embedded_y.transpose(1,0) # [T,B,D]->[B,T,D]
return embedded_y
def prepare_input_target(self, cated_y, y_lens):
embedded_y = self.embed_y(cated_y) # [B,T,D]
# positional embedding
y_input = self.audio_positional_embedding(embedded_y)
# make attention mask and padding mask
y_padding_mask = make_pad_mask(y_lens).to(cated_y.device)
y_attention_mask = torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1).bool().to(y_padding_mask.device)
return y_input, y_padding_mask, y_attention_mask
def dec_forward(
self,
x_input,
x_lens,
x_attention_mask,
x_padding_mask,
y_input,
new_y_lens,
y_attention_mask,
y_padding_mask,
past=None,
last_3_tokens=False
):
x_attn_mask = F.pad(
x_attention_mask,
(0, new_y_lens.max()),
value=True,
) # x attn to all x, doesn't attn to any y, this follow figure 3 of the valle paper
y_attn_mask = F.pad(
y_attention_mask,
(x_lens.max(), 0), # y is padded at the front
value=False,
) # y attn to all x, for y itself use lower triangle mask to ensure autoregressive
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
# merge key padding and attention masks
bsz, src_len = x_input.shape[0], x_lens.max() + new_y_lens.max()
xy_padding_mask = torch.concat([x_padding_mask, y_padding_mask], dim=1)
_xy_padding_mask = (
xy_padding_mask.view(bsz, 1, 1, src_len)
.expand(-1, self.args.nhead, -1, -1)
.reshape(bsz * self.args.nhead, 1, src_len)
)
# Check shapes and resize+broadcast as necessary
if xy_attn_mask.shape != _xy_padding_mask.shape:
assert xy_attn_mask.ndim + 1 == _xy_padding_mask.ndim, f"xy_attn_mask.shape: {xy_attn_mask.shape}, _xy_padding_mask: {_xy_padding_mask.shape}"
xy_attn_mask = xy_attn_mask.unsqueeze(0).repeat(_xy_padding_mask.shape[0], 1, 1) # Example approach
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
new_attn_mask = torch.zeros_like(xy_attn_mask)
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
xy_attn_mask = new_attn_mask
xy_input = torch.cat([x_input, y_input], dim=1)
if past == None: # do not use kvcache
out, _ = self.decoder((xy_input, None), mask=xy_attn_mask)
return out[:, x_lens.max():], None
else: # use kvcache
if past.ndim > 3: # uses kvcache, only need to pass the last tokens, this doesn't work with multi-span speech editing yet
if last_3_tokens:
xy_input = xy_input[:, -3:]
xy_attn_mask = xy_attn_mask[:, -3:]
else:
xy_input = xy_input[:, -1:]
xy_attn_mask = xy_attn_mask[:, -1:]
out, present = self.decoder((xy_input, None), mask=xy_attn_mask, past=past)
if isinstance(out, tuple): # get rid of stage_embedding
out = out[0]
if out.shape[1] > x_lens.max(): # the first pass, not kvcache yet
return out[:, x_lens.max():], present
else: # used kvcache
return out, present
def forward(self, batch):
"""
Args:
x:
A 2-D tensor of shape (N, S).
x_lens:
A 1-D tensor of shape (N,). It contains the number of tokens in `x`
before padding.
y:
A 3-D tensor of shape (N, K, T).
where K is the number of codebooks
y_lens:
A 1-D tensor of shape (N,). It contains the number of tokens in `x`
before padding.
"""
x, x_lens, y, y_lens = batch["x"], batch["x_lens"], batch["y"], batch["y_lens"]
if len(x) == 0:
return None
x = x[:, :x_lens.max()] # this deal with gradient accumulation, where x_lens.max() might not be longer than the length of the current slice of x
y = y[:, :, :y_lens.max()]
assert x.ndim == 2, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.ndim == 3 and y.shape[1] == self.args.n_codebooks, y.shape
assert y_lens.ndim == 1, y_lens.shape
targets = y.clone()
y = y.permute(1,2,0) # [B,K,T]->[K,T,B]
# makes attention mask and padding mask for x
x_padding_mask = make_pad_mask(x_lens).to(x.device)
x_attention_mask = torch.triu(torch.ones(x.shape[1], x.shape[1]), diagonal=1).bool().to(x_padding_mask.device)
x_input = self.text_embedding(x)
x_input = self.text_positional_embedding(x_input)
y_input, y_padding_mask, y_attention_mask = self.prepare_input_target(y, y_lens)
y_out = self.dec_forward(
x_input,
x_lens,
x_attention_mask,
x_padding_mask,
y_input,
y_lens,
y_attention_mask,
y_padding_mask
)
y_out = y_out[0] # no kv-caching during training
assert y_out.shape == y_input.shape, f"y_out.shape: {y_out.shape}, y_input.shape: {y_input.shape}" # [B S D]
logits = torch.stack([self.predict_layer[i](y_out) for i in range(self.args.n_codebooks)], dim=1) # [B K S card]
assert logits.shape[1] == self.args.n_codebooks and logits.shape[3] == self.n_audio_tokens[0], logits.shape
targets = targets.permute(1,0,2) # [K B T]
logits = logits.permute(1,0,2,3) # [K B S card]
logits = logits[:, :, :-1]
targets = targets[:, :, 1:]
if self.args.predict_mask_token:
masks = (targets != self.args.audio_pad_token) & (targets != self.args.empty_token)
else:
masks = (targets != self.args.audio_pad_token) & (targets != self.args.empty_token) & (targets < self.args.mts)
tmp_masks = masks.clone()
if not self.args.predict_all:
eos_pos = (targets == self.args.mts).nonzero(as_tuple=False)
for k, b, t in eos_pos:
tmp_masks[k, b, :t] = False
assert masks.shape[0] == self.args.n_codebooks, masks.shape
loss = []
ntokens = []
top10acc = []
for k, (logit, target, mask, tmp_mask) in enumerate(zip(logits, targets, masks, tmp_masks)):
logit = logit.reshape(-1, logit.size(-1)) # B*S card
target = target.reshape(-1) # B*T
mask = mask.reshape(-1).bool()
tmp_mask = tmp_mask.reshape(-1).bool()
loss.append(F.cross_entropy(logit[tmp_mask], target[tmp_mask], reduction='mean'))
top10acc.append(self.accuracy_metrics[k](logit[tmp_mask].detach(), target[tmp_mask]))
ntokens.append(len(target[mask]))
all_ntokens = sum(ntokens)
if self.args.codebook_weight != None:
codebook_weight = eval(self.args.codebook_weight)
else:
codebook_weight = [1.] * self.args.n_codebooks
loss = sum([l*nt*cw for l, nt, cw in zip(loss, ntokens, codebook_weight)])
top10acc_by_codebook = [t10a*nt for t10a, nt in zip(top10acc, ntokens)]
top10acc = sum(top10acc_by_codebook)
ntokens = torch.tensor(all_ntokens).to(logits.device)
return {
"loss": loss,
"top10acc": top10acc,
"top10acc_by_codebook": top10acc_by_codebook,
"effective_ntoken": ntokens,
}
def rearrange(self, y, non_mask_intervals, mask_intervals):
assert self.args.eos > 0, f"eos={self.args.eos} should > 0"
rearranged_y = []
sos_tensor = torch.LongTensor([self.args.sos] * self.args.n_codebooks).unsqueeze(-1).to(y.device)
eos_tensor = torch.LongTensor([self.args.eos] * self.args.n_codebooks).unsqueeze(-1).to(y.device)
eog_tensor = torch.LongTensor([self.args.eog] * self.args.n_codebooks).unsqueeze(-1).to(y.device)
for i, item in enumerate(non_mask_intervals):
if i == 0:
if item[0] == item[1]: # case: (0,0)
rearranged_y.append(sos_tensor)
else:
rearranged_y.append(torch.cat([sos_tensor, y[:, item[0]: item[1]]], dim=-1))
elif i == len(non_mask_intervals)-1:
if item[0] == item[1]: # case: (N,N)
rearranged_y.append(eos_tensor)
else:
rearranged_y.append(torch.cat([y[:, item[0]: item[1]], eos_tensor], dim=-1))
else:
rearranged_y.append(y[:, item[0]: item[1]])
for i, item in enumerate(mask_intervals):
rearranged_y.append(torch.cat([y[:, item[0]: item[1]], eog_tensor], dim=-1))
return rearranged_y
def get_pattern_sequence(self, tokens: torch.Tensor, n_q: int, special_token: int, delays: tp.Optional[tp.List[int]] = None,
empty_initial: int = 0) -> torch.Tensor:
"""Generate a pattern sequence for delayed codebooks without batch dimension.
Args:
tokens (torch.Tensor): Input tensor of shape [K, T].
n_q (int): Number of codebooks.
delays (Optional[List[int]]): Delay for each codebook. Defaults to increasing delays.
empty_initial (int): Number of initial empty steps. Defaults to 0.
special_token (int): Special token used to fill non-pattern coordinates in the new sequence.
Returns:
torch.Tensor: Modified tokens based on the pattern.
"""
K, T = tokens.shape
assert K == n_q, "Number of codebooks (K) must match n_q"
if delays is None:
delays = list(range(n_q))
max_delay = max(delays)
pattern_length = T + max_delay + empty_initial
pattern_tokens = torch.full((K, pattern_length), fill_value=special_token, dtype=tokens.dtype).to(tokens.device)
for t in range(T):
for q in range(n_q):
delayed_t = t + delays[q] + empty_initial
if delayed_t < pattern_length:
pattern_tokens[q, delayed_t] = tokens[q, t]
return pattern_tokens
def revert_pattern_sequence(self, pattern_tokens: torch.Tensor, n_q: int,
delays: tp.Optional[tp.List[int]] = None, special_token: int = -1) -> torch.Tensor:
"""Revert the pattern sequence back to the original multi-codebook sequence without batch dimension.
Args:
pattern_tokens (torch.Tensor): Pattern tensor of shape [K, S].
n_q (int): Number of codebooks.
delays (Optional[List[int]]): Delay for each codebook. Defaults to increasing delays.
special_token (int): Special token used to fill non-pattern coordinates in the new sequence.
Returns:
torch.Tensor: Reverted tokens of shape [K, T].
"""
K, S = pattern_tokens.shape
assert K == n_q, "Number of codebooks (K) must match n_q"
if delays is None:
delays = list(range(n_q))
T = S - max(delays)
reverted_tokens = torch.full((K, T), fill_value=special_token, dtype=pattern_tokens.dtype).to(pattern_tokens.device)
for t in range(T):
for q in range(n_q):
delayed_t = t + delays[q]
if delayed_t < S:
reverted_tokens[q, t] = pattern_tokens[q, delayed_t]
return reverted_tokens
def shift(self, rearranged_y):
shifted_y = [self.get_pattern_sequence(tokens=cur_y, n_q=self.args.n_codebooks, special_token=self.args.empty_token) for cur_y in rearranged_y] # the first item is values, later two are indexes and mask
return shifted_y
def insert_mask(self, shifted_y):
num_masks = (len(shifted_y) - 1) // 2
assert num_masks == (len(shifted_y) - 1) / 2, len(shifted_y)
emb_inds = list(range(self.args.mts, self.args.mts+ self.args.max_n_spans))
if self.args.shuffle_mask_embedding:
random.shuffle(emb_inds)
emb_inds_use = emb_inds[:num_masks]
mask_value = emb_inds_use + emb_inds_use
assert len(shifted_y) == len(mask_value) + 1, len(mask_value)
inserted_y = []
mask_position = [-1] * (self.args.max_n_spans*2)
for j in range(len(shifted_y)-1):
inserted_y.append(shifted_y[j])
mask_position[j] = sum([item.shape[1] for item in inserted_y]) # each item is of shape [K S], so take shape[1]
tmp = torch.LongTensor([mask_value[j]] * self.args.n_codebooks).unsqueeze(-1).to(shifted_y[0].device)
inserted_y.append(tmp)
inserted_y.append(shifted_y[-1])
mask_position = [item for item in mask_position if item != -1]
return inserted_y, mask_position
def cat_y(self, inserted_y):
cated_y = torch.cat(inserted_y, dim=1)
assert cated_y.shape[0] == self.args.n_codebooks, cated_y.shape
new_y_lens = cated_y.shape[1]
return cated_y, new_y_lens
def inference(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
prompt_x: torch.Tensor,
prompt_x_lens: torch.Tensor,
y: torch.Tensor,
prompt: torch.Tensor,
mask_interval: list[torch.Tensor],
top_k: int=-100,
top_p: float=1.0,
temperature: float=1.0,
stop_repetition: int=-1,
kvcache: int=1,
silence_tokens: list[int]=[1388,1898,131],
cfg_coef: float=1.5,
aug_text: bool=False,
aug_context: bool=False,
cfg_pretrained: bool=False,
) -> torch.Tensor:
"""
Args:
x:
A 2-D tensor of shape (1, L).
x_lens:
A 1-D tensor of shape (1,). It contains the number of tokens in `x`
before padding.
y:
A 3-D tensor of shape (1, T, K).
mask_interval:
a list of tensors of shape (M, 2). contains M mask_start and mask_end. list length is actually 1, because we only support single sample inference for now
top_k: (`optional`) int
The number of highest probability tokens to keep for top-k-filtering. Default to -100.
top_p: (`optional`) float
For Neucleus sampling
temperature: (`optional`) float
The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
stop_repetition (`optional`) int
if not -1, will set the logits of a token that repeated this many times to be -100000, to avoid generating it again. This only apply to tokens from the first codebook
kvcache (`optional`) int
if 1, use kvcache to speed up sampling
cfg_coef: float (>= 1.0)
aug_text: whether use cfg to improve the text input
aug_context: whether improve the context by combining original audio and text
cfg_pretrained: whether use cfg in training
"""
assert cfg_coef >= 1.0, cfg_coef
assert x.ndim == 2, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.ndim == 3, y.shape
y = y.transpose(2,1) # [1,T,K] -> [1,K,T]
assert prompt.ndim == 3, prompt.shape
prompt = prompt.transpose(2,1)
assert y.shape[0] == 1 and y.shape[1] == self.args.n_codebooks, y.shape # there is no padding
assert prompt.shape[0] == 1 and prompt.shape[1] == self.args.n_codebooks, prompt.shape # there is no padding
assert mask_interval.shape == torch.Size((1, mask_interval.shape[1], 2)), mask_interval
# whether to use context
context_len = sum([item[1] - item[0] for item in mask_interval[0]])
if aug_context and context_len < 2 * 50:
aug_context = True
else:
aug_context = False
# augment
if aug_text and not aug_context: # [t, ab, m] [t', ab, m]
y = y.repeat(2, 1, 1)
if not cfg_pretrained:
uncond_x = torch.randint(0, self.n_text_tokens, (1, x.shape[1])).to(x.device)
else:
uncond_x = torch.tensor([self.args.text_vocab_size-1], dtype=torch.long).unsqueeze(0).repeat(1, x.shape[1]).to(x.device)
x = torch.cat([x, uncond_x], dim=0)
if aug_text and aug_context: # [tc, t, c, ab, m] [tc, t', c, ab, m]
out_len = prompt.shape[2]
gt_y = torch.cat([prompt, y], dim=-1)
y = gt_y.repeat(2, 1, 1)
gt_x = torch.cat([prompt_x, x], dim=1)
if not cfg_pretrained:
uncond_x = torch.randint(0, self.n_text_tokens, (1, gt_x.shape[1])).to(gt_x.device)
else:
uncond_x = torch.tensor([self.args.text_vocab_size-1], dtype=torch.long).unsqueeze(0).repeat(1, gt_x.shape[1]).to(gt_x.device)
x = torch.cat([gt_x, uncond_x], dim=0)
if not aug_text and aug_context: # [tc, t, c, ab, m]
out_len = prompt.shape[2]
y = torch.cat([prompt, y], dim=-1)
x = torch.cat([prompt_x, x], dim=1)
# make x attention mask and x_input
x_lens = torch.LongTensor([x.shape[-1]]).to(x_lens.device)
x_attention_mask = torch.triu(torch.ones(x.shape[1], x.shape[1]), diagonal=1).bool().to(x.device)
x_input = self.text_embedding(x)
x_input = self.text_positional_embedding(x_input)
# make initial y_input
# make mask_interval and non_mask_interval
y_len = y.shape[2]
y_lens = torch.LongTensor([y_len]).to(y.device)
mask_interval = mask_interval[0]
if aug_context:
mask_interval = [[item[0]+out_len, item[1]+out_len] for item in mask_interval]
starts = [item[0].item() for item in mask_interval] + [y_len]
ends = [0] + [item[1].item() for item in mask_interval]
mask_intervals = [
(item[0].item(), item[1].item()) for item in mask_interval
] # a werid name change, mask_interval is input, now is mask_intervals, with one more dimension
non_mask_intervals = [
(ns, ne) for ns, ne in zip(ends, starts)
]
# prepare input sequences
rearranged_y = self.rearrange(y[0], non_mask_intervals, mask_intervals)
shifted_y = self.shift(rearranged_y) # each element [K S], patterns is not used, as we directly use the original input y
inserted_y, mask_position = self.insert_mask(shifted_y)
cated_y, new_y_lens = self.cat_y(inserted_y) # KT
num_task = len(mask_position)//2
cated_y = cated_y[:, :mask_position[num_task]] # of shape [K,T] input of the network
new_y_lens = torch.LongTensor([mask_position[num_task]]).to(cated_y.device)
cated_y = cated_y.unsqueeze(0).permute(1,2,0) # B,K,T -> K,T,B
if aug_text:
cated_y = cated_y.repeat(1, 1, 2)
embedded_y = self.embed_y(cated_y) #BTD
if aug_text:
x_padding_mask = torch.full((2, x_lens[0]), False).to(x.device)
if cfg_pretrained:
x_padding_mask[1:, 1:] = True
past = torch.ones([self.args.num_decoder_layers, 2, 2], device=x.device, dtype=torch.float32) if kvcache else None
else:
x_padding_mask = torch.full((1, x_lens[0]), False).to(x.device)
past = torch.ones([self.args.num_decoder_layers, 2, 1], device=x.device, dtype=torch.float32) if kvcache else None
emb_inds = list(range(self.args.mts, self.args.mts+ self.args.max_n_spans))
generated = []
logging.info(f"silence tokens: {silence_tokens}, note that if you are not using the pretrained encodec 6f79c6a8, make sure you specified it yourself, rather than using the default")
for idx in range(num_task):
cur_generated = []
prev_token = None
consec_silence_count = 0
num_gen = 0
num_eog = 0
# add mask token
mts = torch.LongTensor([emb_inds[idx]] * self.args.n_codebooks).unsqueeze(-1).to(embedded_y.device) # K, 1
mts_emb = torch.stack([self.audio_embedding[k](mts[k]) for k in range(self.args.n_codebooks)], dim=0) # [K,1,D]
mts_emb = mts_emb.sum(dim=0,keepdim=True) # [1,1,D]
if aug_text:
mts_emb = mts_emb.repeat(2,1,1)
embedded_y = torch.cat([embedded_y, mts_emb], dim=1)
# positional embedding
y_input = self.audio_positional_embedding(embedded_y) # [B T D]
# make attention mask and padding mask
y_attention_mask = torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1).bool().to(y.device)
new_y_lens = torch.LongTensor([y_input.shape[1]]).to(y.device)
if aug_text:
y_padding_mask = torch.full((2,new_y_lens[0]), False).to(y.device)
else:
y_padding_mask = torch.full((1,new_y_lens[0]), False).to(y.device)
while True:
# get model output
y_out, present = self.dec_forward(
x_input,
x_lens,
x_attention_mask,
x_padding_mask,
y_input,
new_y_lens,
y_attention_mask,
y_padding_mask,
past=past,
last_3_tokens=False
)
if past != None:
past = torch.cat([past, present.to(past.dtype)], dim=-2) if past.ndim > 3 else present.to(past.dtype)
y_out = y_out[:, -1:] # only take the last one
logits = torch.stack([self.predict_layer[i](y_out) for i in range(self.args.n_codebooks)], dim=1) # [B K S card], B==S==1, so [1 K 1 card]
logits = logits.squeeze() # [K card]
if aug_text:
logits = cfg_coef * logits[0] + (1 - cfg_coef) * logits[1]
assert logits.shape == torch.Size((self.args.n_codebooks, self.n_audio_tokens[0])), f"{logits.shape}"
# filter out mts, sos and eos
for jj in range(self.args.n_codebooks):
logits[jj][self.args.eos] = -10000.
logits[jj][self.args.sos] = -10000.
for mts in range(self.args.mts, self.args.mts+ self.args.max_n_spans):
logits[jj][mts] = -10000.
# add first empty tokens
if num_gen < self.args.n_codebooks - 1:
for jj in range(num_gen + 1, self.args.n_codebooks):
logits[jj][self.args.empty_token] = 10000.
# deal with eog token
if num_eog > 0: # codebook 1 has produced eog token
for jj in range(num_eog+1,self.args.n_codebooks):
logits[jj][self.args.eog] = -10000
logits[jj][self.args.empty_token] = -10000
samples = topk_sampling(
logits, top_k=top_k, top_p=top_p, temperature=temperature
) # [K, 1]
for jj in range(num_eog):
samples[jj, 0] = self.args.empty_token
samples[num_eog, 0] = self.args.eog
num_eog += 1
else: # codebook 1 did not produce eog token
# filter out eog for codebook 2-4
for jj in range(1,self.args.n_codebooks):
logits[jj][self.args.eog] = -10000
# silence repetition handling
if stop_repetition > 0 and prev_token in silence_tokens and consec_silence_count > stop_repetition:
if logits[0, prev_token] < 0:
logits[0, prev_token] = logits[0, prev_token] * (consec_silence_count - (stop_repetition-1))
else:
logits[0, prev_token] = logits[0, prev_token] / (consec_silence_count - (stop_repetition-1))
samples = topk_sampling(
logits, top_k=top_k, top_p=top_p, temperature=temperature
) # [K, 1]
assert samples.shape == torch.Size((self.args.n_codebooks, 1)), f"samples.shape: {samples.shape}"
if (
samples[0,0] == self.args.eog or torch.argmax(logits[0], dim=-1) == self.args.eog or y_input.shape[1] > x_lens[0] * 10
): # last one means y is already too long, shouldn't happen, but put it here
samples[0,0] = self.args.eog
num_eog += 1
if samples[0,0] in silence_tokens and samples[0,0] == prev_token:
consec_silence_count += 1
else:
consec_silence_count = 0
prev_token = samples[0,0]
num_gen += 1
cur_generated.append(samples.squeeze(-1))
if num_eog == self.args.n_codebooks: # current span is done
break
# prepare input for next token prediction
samples_emb = torch.stack([self.audio_embedding[k](samples[k]) for k in range(self.args.n_codebooks)], dim=0) # [K,1,D]
samples_emb = samples_emb.sum(dim=0,keepdim=True) # [1,1,D]
if aug_text:
samples_emb = samples_emb.repeat(2, 1, 1)
embedded_y = torch.cat([embedded_y, samples_emb], dim=1)
# positional embedding
y_input = self.audio_positional_embedding(embedded_y) # [B T D]
# make attention mask and padding mask
y_attention_mask = torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1).bool().to(y.device)
new_y_lens = torch.LongTensor([y_input.shape[1]]).to(y.device)
if aug_text:
y_padding_mask = torch.full((2,new_y_lens[0]), False).to(y.device)
else:
y_padding_mask = torch.full((1,new_y_lens[0]), False).to(y.device)
generated.append(cur_generated)
assert len(generated) == num_task, f"len(generated): {len(generated)}, num_task: {num_task}"
# # combine non_masked_span with generated spans
# first need to shift the generated part back
flatten_gen = []
for i, orig_span in enumerate(generated):
span = torch.stack(orig_span, dim=0) # [T K]
span = span.transpose(1,0) # [K, T]
assert span.shape[0] == self.args.n_codebooks, span.shape
unshifted_span = self.revert_pattern_sequence(pattern_tokens=span, n_q=self.args.n_codebooks, special_token=self.args.empty_token)
assert unshifted_span.shape[1] == span.shape[1]-self.args.n_codebooks+1, f"unshifted_span:{unshifted_span.shape}, orig_span:{span.shape}"
unshifted_span = unshifted_span[:,:-1] # remove eog token
flatten_gen.append(unshifted_span)
res = []
marks = []
masks = []
tmp = 0
for orig_interval, gen in zip(non_mask_intervals, flatten_gen):
res.append(y[0, :, orig_interval[0]:orig_interval[1]])
masks.append((tmp, tmp+orig_interval[1]-orig_interval[0]))
tmp_mark = [0] * (orig_interval[1] - orig_interval[0])
marks = [*marks, *tmp_mark]
res.append(gen)
tmp += orig_interval[1]-orig_interval[0] + gen.shape[-1]
tmp_mark = [1] * gen.shape[-1]
marks = [*marks, *tmp_mark]
if y.shape[-1] != non_mask_intervals[-1][1] + 1: # edit last tokens or tts
res.append(y[0, :, non_mask_intervals[-1][0]:non_mask_intervals[-1][1]])
masks.append((tmp, tmp+non_mask_intervals[-1][1]-non_mask_intervals[-1][0]))
tmp_mark = [0] * (non_mask_intervals[-1][1] - non_mask_intervals[-1][0])
marks = [*marks, *tmp_mark]
res = torch.cat(res, dim=1).unsqueeze(0) # [K,new_T] -> [1, K, new_T]
marks = torch.LongTensor(marks).unsqueeze(0)
if aug_context:
res = res[:, :, out_len:]
marks = marks[:, out_len:]
masks = [(item[0]-out_len, item[1]-out_len) for item in masks]
non_mask_intervals = [(item[0]-out_len, item[1]-out_len) for item in non_mask_intervals]
return res, marks, masks, non_mask_intervals
if __name__ == "__main__":
# debug
pass
|