Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,331 Bytes
f5b4ff2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# @ [email protected]
import os
import torch
import random
import copy
import logging
import shutil
import typing as tp
class dataset(torch.utils.data.Dataset):
def __init__(self, args, split):
super().__init__()
self.args = args
self.split = split
assert self.split in ['train', 'validation', 'test']
manifest_fn = os.path.join(self.args.dataset_dir, self.args.manifest_name, self.split+".txt")
with open(manifest_fn, "r") as rf:
data = [l.strip().split("\t") for l in rf.readlines()]
lengths_list = [int(item[-1]) for item in data]
self.data = []
self.lengths_list = []
for d, l in zip(data, lengths_list):
if l >= self.args.encodec_sr*self.args.audio_min_length:
if self.args.drop_long and l > self.args.encodec_sr*self.args.audio_max_length:
continue
self.data.append(d)
self.lengths_list.append(l)
logging.info(f"number of data points for {self.split} split: {len(self.lengths_list)}")
# phoneme vocabulary
vocab_fn = os.path.join(self.args.dataset_dir,"vocab.txt")
shutil.copy(vocab_fn, os.path.join(self.args.exp_dir, "vocab.txt"))
with open(vocab_fn, "r") as f:
temp = [l.strip().split(" ") for l in f.readlines() if len(l) != 0]
self.phn2num = {item[1]:int(item[0]) for item in temp}
self.symbol_set = set(["<SIL>", "<MUSIC>", "<NOISE>", "<OTHER>"])
def __len__(self):
return len(self.lengths_list)
def _load_phn_enc(self, index):
item = self.data[index]
pf = os.path.join(self.args.dataset_dir, self.args.phn_folder_name, item[1]+".txt")
ef = os.path.join(self.args.dataset_dir, self.args.encodec_folder_name, item[1]+".txt")
try:
with open(pf, "r") as p, open(ef, "r") as e:
phns = [l.strip() for l in p.readlines()]
assert len(phns) == 1, phns
x = [self.phn2num[item] for item in phns[0].split(" ") if item not in self.symbol_set] # drop ["<SIL>", "<MUSIC>", "<NOISE>", "<OTHER>"], as they are not in training set annotation
encos = [l.strip().split() for k, l in enumerate(e.readlines()) if k < self.args.n_codebooks]
assert len(encos) == self.args.n_codebooks, ef
if self.args.special_first:
y = [[int(n)+self.args.n_special for n in l] for l in encos]
else:
y = [[int(n) for n in l] for l in encos]
except Exception as e:
logging.info(f"loading failed for {pf} and {ef}, maybe files don't exist or are corrupted")
logging.info(f"error message: {e}")
return [], [[]]
return x, y
def prepare_mask_intervals(self, y_len):
# random generate mask intervals
# Mask Intervals: [(5, 9), (19, 29)]
# Non-Mask Intervals: [[(0, 5), (9, 19), (29, 30)]]
if self.args.mask_sample_dist == "uniform":
n_spans = random.choice(range(1, self.args.max_n_spans + 1))
elif "poisson" in self.args.mask_sample_dist.lower():
param = float(self.args.mask_sample_dist[len("poisson"):])
poisson_sample = torch.poisson(torch.tensor([param]))
n_spans = int(poisson_sample.clamp(1, self.args.max_n_spans).item())
starts = random.sample(range(0, y_len - self.args.mask_len_min), n_spans)
starts = sorted(starts)
for j in range(len(starts) - 1, 0, -1):
if starts[j] - starts[j - 1] < self.args.min_gap:
del starts[j]
assert len(starts) > 0, f"there is no masked span left, y_len: {y_len}, sampled n_spans: {n_spans}"
tmp_mask_len_max = int(self.args.max_mask_portion * y_len / len(starts))
ends = []
for j, start in enumerate(starts):
if j < len(starts) - 1:
mask_len = random.randint(self.args.mask_len_min, min(tmp_mask_len_max, starts[j+1]-starts[j]-self.args.min_gap+1))
else:
mask_len = random.randint(self.args.mask_len_min, min(tmp_mask_len_max, y_len-starts[j]))
ends.append(start + mask_len)
if self.args.tts_enhanced > 0 and random.random() < 0.5:
starts[-1] = max(starts[-1], y_len - tmp_mask_len_max)
ends[-1] = y_len
mask_intervals = [(s, e) for s, e in zip(starts, ends)]
non_mask_intervals = [(ns, ne) for ns, ne in zip([0] + ends, starts + [y_len])]
return mask_intervals, non_mask_intervals
def rearrange(self, y, non_mask_intervals, mask_intervals):
assert self.args.eos > 0, f"eos={self.args.eos} should > 0"
rearranged_y = []
sos_tensor = torch.tensor([self.args.sos] * self.args.n_codebooks).unsqueeze(-1)
eos_tensor = torch.tensor([self.args.eos] * self.args.n_codebooks).unsqueeze(-1)
eog_tensor = torch.tensor([self.args.eog] * self.args.n_codebooks).unsqueeze(-1)
for i, item in enumerate(non_mask_intervals):
if i == 0:
if item[0] == item[1]: # case: (0,0)
rearranged_y.append(sos_tensor)
else:
rearranged_y.append(torch.cat([sos_tensor, y[:, item[0]: item[1]]], dim=-1))
elif i == len(non_mask_intervals)-1:
if item[0] == item[1]: # case: (N,N)
rearranged_y.append(eos_tensor)
else:
rearranged_y.append(torch.cat([y[:, item[0]: item[1]], eos_tensor], dim=-1))
else:
rearranged_y.append(y[:, item[0]: item[1]])
for i, item in enumerate(mask_intervals):
rearranged_y.append(torch.cat([y[:, item[0]: item[1]], eog_tensor], dim=-1))
return rearranged_y
def get_pattern_sequence(self, tokens: torch.Tensor, n_q: int, special_token: int, delays: tp.Optional[tp.List[int]] = None,
empty_initial: int = 0) -> torch.Tensor:
"""Generate a pattern sequence for delayed codebooks without batch dimension.
Args:
tokens (torch.Tensor): Input tensor of shape [K, T].
n_q (int): Number of codebooks.
delays (Optional[List[int]]): Delay for each codebook. Defaults to increasing delays.
empty_initial (int): Number of initial empty steps. Defaults to 0.
special_token (int): Special token used to fill non-pattern coordinates in the new sequence.
Returns:
torch.Tensor: Modified tokens based on the pattern.
"""
K, T = tokens.shape
assert K == n_q, "Number of codebooks (K) must match n_q"
if delays is None:
delays = list(range(n_q))
max_delay = max(delays)
pattern_length = T + max_delay + empty_initial
pattern_tokens = torch.full((K, pattern_length), fill_value=special_token, dtype=tokens.dtype, device=tokens.device)
for t in range(T):
for q in range(n_q):
delayed_t = t + delays[q] + empty_initial
if delayed_t < pattern_length:
pattern_tokens[q, delayed_t] = tokens[q, t]
return pattern_tokens
def revert_pattern_sequence(self, pattern_tokens: torch.Tensor, n_q: int,
delays: tp.Optional[tp.List[int]] = None, special_token: int = -1) -> torch.Tensor:
"""Revert the pattern sequence back to the original multi-codebook sequence without batch dimension.
Args:
pattern_tokens (torch.Tensor): Pattern tensor of shape [K, S].
n_q (int): Number of codebooks.
delays (Optional[List[int]]): Delay for each codebook. Defaults to increasing delays.
special_token (int): Special token used to fill non-pattern coordinates in the new sequence.
Returns:
torch.Tensor: Reverted tokens of shape [K, T].
"""
K, S = pattern_tokens.shape
assert K == n_q, "Number of codebooks (K) must match n_q"
if delays is None:
delays = list(range(n_q))
T = S - max(delays)
reverted_tokens = torch.full((K, T), fill_value=special_token, dtype=pattern_tokens.dtype, device=pattern_tokens.device)
for t in range(T):
for q in range(n_q):
delayed_t = t + delays[q]
if delayed_t < S:
reverted_tokens[q, t] = pattern_tokens[q, delayed_t]
return reverted_tokens
def shift(self, rearranged_y):
shifted_y = [self.get_pattern_sequence(tokens=cur_y, n_q=self.args.n_codebooks, special_token=self.args.empty_token) for cur_y in rearranged_y] # the first item is values, later two are indexes and mask
return shifted_y
def insert_mask(self, shifted_y):
num_masks = (len(shifted_y) - 1) // 2
assert num_masks == (len(shifted_y) - 1) / 2, len(shifted_y)
emb_inds = list(range(self.args.mts, self.args.mts+ self.args.max_n_spans))
if self.args.shuffle_mask_embedding:
random.shuffle(emb_inds)
emb_inds_use = emb_inds[:num_masks]
mask_value = emb_inds_use + emb_inds_use
assert len(shifted_y) == len(mask_value) + 1, len(mask_value)
inserted_y = []
mask_position = [-1] * (self.args.max_n_spans*2)
for j in range(len(shifted_y)-1):
inserted_y.append(shifted_y[j])
mask_position[j] = sum([item.shape[1] for item in inserted_y]) # each item is of shape [K S], so take shape[1]
tmp = torch.tensor([mask_value[j]] * self.args.n_codebooks).unsqueeze(-1)
inserted_y.append(tmp)
inserted_y.append(shifted_y[-1])
mask_position = [item for item in mask_position if item != -1]
return inserted_y, mask_position
def cat_y(self, inserted_y):
cated_y = torch.cat(inserted_y, dim=1)
assert cated_y.shape[0] == self.args.n_codebooks, cated_y.shape
new_y_lens = cated_y.shape[1]
return cated_y, new_y_lens
def __getitem__(self, index):
x, y = self._load_phn_enc(index)
x_len, y_len = len(x), len(y[0])
if x_len == 0 or y_len == 0: # load failure
item = self.data[index]
pf = os.path.join(self.args.dataset_dir, self.args.phn_folder_name, item[1]+".txt")
logging.info(f"loading failed for {pf}, length is 0")
return {
"x": None,
"x_len": None,
"y": None,
"y_len": None,
}
if y_len < self.args.encodec_sr * self.args.audio_min_length or x_len < self.args.text_min_length: # too short
item = self.data[index]
pf = os.path.join(self.args.dataset_dir, self.args.phn_folder_name, item[1]+".txt")
logging.info(f"loading failed for {pf}, too short")
return {
"x": None,
"x_len": None,
"y": None,
"y_len": None,
}
if self.args.drop_long:
if x_len > self.args.text_max_length or y_len > self.args.encodec_sr * self.args.audio_max_length: # too long
item = self.data[index]
pf = os.path.join(self.args.dataset_dir, self.args.phn_folder_name, item[1]+".txt")
logging.info(f"loading failed for {pf}, too long")
return {
"x": None,
"x_len": None,
"y": None,
"y_len": None,
}
if self.args.cfg_enhanced and random.random() < 0.1: # We use the last unused token for cfg training
x = torch.tensor([self.args.text_vocab_size-1], dtype=torch.long)
x_len = len(x)
mask_intervals, non_mask_intervals = self.prepare_mask_intervals(y_len)
rearranged_y = self.rearrange(torch.LongTensor(y), non_mask_intervals, mask_intervals)
shifted_y = self.shift(rearranged_y)
inserted_y, mask_position = self.insert_mask(shifted_y)
y, y_len = self.cat_y(inserted_y)
x = torch.LongTensor(x)
y = torch.LongTensor(y)
if not (y < int(self.args.audio_vocab_size) + self.args.n_special + self.args.max_n_spans).all():
item = self.data[index]
pf = os.path.join(self.args.dataset_dir, self.args.phn_folder_name, item[1]+".txt")
logging.info(f"loading failed for {pf}, index out of range")
return {
"x": None,
"x_len": None,
"y": None,
"y_len": None,
}
return {
"x": x,
"x_len": x_len,
"y": y,
"y_len": y_len
}
def collate(self, batch):
out = {key:[] for key in batch[0]}
for item in batch:
if item['x'] == None: # deal with load failure
continue
for key, val in item.items():
out[key].append(val)
res = {}
if self.args.pad_x:
res["x"] = torch.stack(out["x"], dim=0)
else:
res["x"] = torch.nn.utils.rnn.pad_sequence(out["x"], batch_first=True, padding_value=self.args.text_pad_token)
res["x_lens"] = torch.LongTensor(out["x_len"])
if self.args.dynamic_batching:
if out['y'][0].ndim==2:
res['y'] = torch.nn.utils.rnn.pad_sequence([item.transpose(1,0) for item in out['y']],padding_value=self.args.audio_pad_token)
res['y'] = res['y'].permute(1,2,0) # T B K -> B K T
else:
assert out['y'][0].ndim==1, out['y'][0].shape
res['y'] = torch.nn.utils.rnn.pad_sequence(out['y'], batch_first=True, padding_value=self.args.audio_pad_token)
else:
res['y'] = torch.stack(out['y'], dim=0)
res["y_lens"] = torch.LongTensor(out["y_len"])
return res
if __name__ == "__main__":
# debug
pass
|