File size: 21,454 Bytes
0203722
 
 
6210885
0203722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
788a499
1fa352f
0203722
 
6210885
0203722
 
 
 
54f231c
6210885
0203722
 
 
788a499
 
 
 
 
 
 
 
 
 
292c2fc
0203722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68683f4
292c2fc
0203722
788a499
0203722
788a499
0203722
 
 
 
 
 
292c2fc
0203722
788a499
0203722
788a499
0203722
 
788a499
0203722
 
 
 
 
 
 
 
 
292c2fc
0203722
788a499
0203722
788a499
0203722
 
 
 
 
 
 
 
292c2fc
9457d94
915b86a
 
 
 
0203722
 
 
41c3bad
54f231c
3daaddd
0203722
 
 
41c3bad
54f231c
0203722
9457d94
54f231c
0203722
 
 
 
69e76a4
0203722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
788a499
 
 
 
 
 
0203722
 
 
 
 
 
 
 
 
 
292c2fc
915b86a
 
 
0203722
 
 
 
 
 
 
 
788a499
0203722
 
 
 
292c2fc
915b86a
 
0203722
 
788a499
0203722
 
 
3daaddd
0203722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292c2fc
0203722
3daaddd
915b86a
788a499
915b86a
0203722
 
 
 
3daaddd
 
 
 
 
 
 
0203722
 
 
3daaddd
 
 
 
 
915b86a
3daaddd
 
 
915b86a
3daaddd
 
 
 
915b86a
3daaddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
915b86a
0203722
3daaddd
 
 
915b86a
3daaddd
 
 
 
915b86a
3daaddd
 
 
 
 
 
 
 
 
 
 
 
 
0203722
3daaddd
 
0203722
3daaddd
 
 
 
 
 
 
 
 
 
 
0203722
3daaddd
 
 
 
 
 
 
 
 
 
 
 
 
 
0203722
3daaddd
 
 
 
 
 
0203722
3daaddd
 
 
 
 
 
 
0203722
3daaddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
915b86a
3daaddd
915b86a
3daaddd
 
 
 
915b86a
3daaddd
 
 
 
 
 
 
 
 
 
 
 
 
0203722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4927550
 
 
 
 
3daaddd
4927550
 
 
 
9457d94
4927550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3daaddd
 
 
 
4927550
3daaddd
4927550
3daaddd
 
4927550
 
 
 
 
9457d94
915b86a
4927550
cc9b589
4927550
3daaddd
 
 
4927550
 
 
 
3daaddd
 
 
915b86a
4927550
3daaddd
0203722
 
 
 
 
 
 
 
 
 
 
 
97bf543
0203722
 
 
 
 
 
 
 
 
788a499
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import os
import re
from num2words import num2words
import gradio as gr
import torch
import torchaudio
from data.tokenizer import (
    AudioTokenizer,
    TextTokenizer,
)
from edit_utils_zh import parse_edit_zh
from edit_utils_en import parse_edit_en
from edit_utils_zh import parse_tts_zh
from edit_utils_en import parse_tts_en
from inference_scale import inference_one_sample
import librosa
import soundfile as sf
from models import ssr
import io
import numpy as np
import random
import uuid
import opencc
import spaces
import nltk
nltk.download('punkt')

DEMO_PATH = os.getenv("DEMO_PATH", "./demo")
TMP_PATH = os.getenv("TMP_PATH", "./demo/temp")
MODELS_PATH = os.getenv("MODELS_PATH", "./pretrained_models")
device = "cuda" if torch.cuda.is_available() else "cpu"
transcribe_model, align_model, ssrspeech_model = None, None, None

def get_random_string():
    return "".join(str(uuid.uuid4()).split("-"))

def traditional_to_simplified(segments):
    converter = opencc.OpenCC('t2s') 
    seg_num = len(segments)
    for i in range(seg_num):
        words = segments[i]['words']
        for j in range(len(words)):
            segments[i]['words'][j]['word'] = converter.convert(segments[i]['words'][j]['word'])
        segments[i]['text'] = converter.convert(segments[i]['text'])
    return segments

@spaces.GPU
def seed_everything(seed):
    if seed != -1:
        os.environ['PYTHONHASHSEED'] = str(seed)
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True

def get_mask_interval(transcribe_state, word_span):
    print(transcribe_state)
    seg_num = len(transcribe_state['segments'])
    data = []
    for i in range(seg_num):
      words = transcribe_state['segments'][i]['words']
      for item in words:
        data.append([item['start'], item['end'], item['word']])

    s, e = word_span[0], word_span[1]
    assert s <= e, f"s:{s}, e:{e}"
    assert s >= 0, f"s:{s}"
    assert e <= len(data), f"e:{e}"
    if e == 0: # start
        start = 0.
        end = float(data[0][0])
    elif s == len(data): # end
        start = float(data[-1][1])
        end = float(data[-1][1]) # don't know the end yet
    elif s == e: # insert
        start = float(data[s-1][1])
        end = float(data[s][0])
    else:
        start = float(data[s-1][1]) if s > 0 else float(data[s][0])
        end = float(data[e][0]) if e < len(data) else float(data[-1][1])

    return (start, end)
    
@spaces.GPU
class WhisperxAlignModel:
    def __init__(self, language):
        from whisperx import load_align_model
        self.model, self.metadata = load_align_model(language_code=language, device=device)

    def align(self, segments, audio_path):
        from whisperx import align, load_audio
        audio = load_audio(audio_path)
        return align(segments, self.model, self.metadata, audio, device, return_char_alignments=False)["segments"]

@spaces.GPU
class WhisperModel:
    def __init__(self, model_name, language):
        from whisper import load_model
        self.model = load_model(model_name, device, language=language)

        from whisper.tokenizer import get_tokenizer
        tokenizer = get_tokenizer(multilingual=False, language=language)
        self.supress_tokens = [-1] + [
            i
            for i in range(tokenizer.eot)
            if all(c in "0123456789" for c in tokenizer.decode([i]).removeprefix(" "))
        ]

    def transcribe(self, audio_path):
        return self.model.transcribe(audio_path, suppress_tokens=self.supress_tokens, word_timestamps=True)["segments"]

@spaces.GPU
class WhisperxModel:
    def __init__(self, model_name, align_model, language):
        from whisperx import load_model
        self.model = load_model(model_name, device, asr_options={"suppress_numerals": True, "max_new_tokens": None, "clip_timestamps": None, "hallucination_silence_threshold": None}, language=language)
        self.align_model = align_model

    def transcribe(self, audio_path):
        segments = self.model.transcribe(audio_path, batch_size=8)["segments"]
        for segment in segments:
            segment['text'] = replace_numbers_with_words(segment['text'])
        return self.align_model.align(segments, audio_path)

@spaces.GPU
def load_models(ssrspeech_model_name):
    global transcribe_model, align_model, ssrspeech_model
    
    alignment_model_name = "whisperX"
    whisper_backend_name = "whisperX"
    if ssrspeech_model_name == "English":
        ssrspeech_model_name = "English"
        text_tokenizer = TextTokenizer(backend="espeak")
        language = "en"
        transcribe_model_name = "base.en"
        
    elif ssrspeech_model_name == "Mandarin":
        ssrspeech_model_name = "Mandarin"
        text_tokenizer = TextTokenizer(backend="espeak", language='cmn')
        language = "zh"
        transcribe_model_name = "base"

    align_model = WhisperxAlignModel(language)
    transcribe_model = WhisperxModel(transcribe_model_name, align_model, language)

    ssrspeech_fn = f"{MODELS_PATH}/{ssrspeech_model_name}.pth"
    if not os.path.exists(ssrspeech_fn):
        os.system(f"wget https://huggingface.co/westbrook/SSR-Speech-{ssrspeech_model_name}/resolve/main/{ssrspeech_model_name}.pth -O " + ssrspeech_fn)
    print(transcribe_model, align_model)
    ckpt = torch.load(ssrspeech_fn)
    model = ssr.SSR_Speech(ckpt["config"])
    model.load_state_dict(ckpt["model"])
    config = model.args
    phn2num = ckpt["phn2num"]
    model.to(device)

    encodec_fn = f"{MODELS_PATH}/wmencodec.th"
    if not os.path.exists(encodec_fn):
        os.system(f"wget https://huggingface.co/westbrook/SSR-Speech-English/resolve/main/wmencodec.th -O " + encodec_fn)

    ssrspeech_model = {
        "config": config,
        "phn2num": phn2num,
        "model": model,
        "text_tokenizer": text_tokenizer,
        "audio_tokenizer": AudioTokenizer(signature=encodec_fn)
    }
    success_message = "<span style='color:green;'>Success: Models loading completed successfully!</span>"

    return [
        gr.Accordion(),
        success_message
    ]


def get_transcribe_state(segments):
    transcript = " ".join([segment["text"] for segment in segments])
    transcript = transcript[1:] if transcript[0] == " " else transcript
    return {
        "segments": segments,
        "transcript": transcript,
    }

@spaces.GPU
def transcribe(audio_path):
    global transcribe_model
    
    if transcribe_model is None:
        raise gr.Error("Transcription model not loaded")

    segments = transcribe_model.transcribe(audio_path)
    state = get_transcribe_state(segments)
    success_message = "<span style='color:green;'>Success: Transcribe completed successfully!</span>"

    return [
        state["transcript"], state['segments'],
        state, success_message
    ]


@spaces.GPU
def align(segments, audio_path):
    global align_model
    if align_model is None:
        raise gr.Error("Align model not loaded")
    
    segments = align_model.align(segments, audio_path)
    state = get_transcribe_state(segments)

    return state


def get_output_audio(audio_tensors, codec_audio_sr):
    result = torch.cat(audio_tensors, 1)
    buffer = io.BytesIO()
    torchaudio.save(buffer, result, int(codec_audio_sr), format="wav")
    buffer.seek(0)
    return buffer.read()

def replace_numbers_with_words(sentence):
    sentence = re.sub(r'(\d+)', r' \1 ', sentence) # add spaces around numbers
    def replace_with_words(match):
        num = match.group(0)
        try:
            return num2words(num) # Convert numbers to words
        except:
            return num # In case num2words fails (unlikely with digits but just to be safe)
    return re.sub(r'\b\d+\b', replace_with_words, sentence) # Regular expression that matches numbers

@spaces.GPU
def run(seed, sub_amount, ssrspeech_model_choice, codec_audio_sr, codec_sr, top_k, top_p, temperature,
        stop_repetition, kvcache, silence_tokens, aug_text, cfg_coef, prompt_length,
        audio_path, original_transcript, transcript, mode):
    
    global transcribe_model, align_model, ssrspeech_model
    aug_text = True if aug_text == 1 else False
    if ssrspeech_model is None:
        raise gr.Error("ssrspeech model not loaded")
    
    seed_everything(seed)
    
    if ssrspeech_model_choice == "English":
        language = "en"
    elif ssrspeech_model_choice == "Mandarin":
        language = "zh"

    # resample audio
    audio, _ = librosa.load(audio_path, sr=16000)
    sf.write(audio_path, audio, 16000)
    
    # text normalization
    target_transcript = replace_numbers_with_words(transcript).replace("  ", " ").replace("  ", " ").replace("\n", " ")
    orig_transcript = replace_numbers_with_words(original_transcript).replace("  ", " ").replace("  ", " ").replace("\n", " ")

    [orig_transcript, segments, _] = transcribe(audio_path)
    if language == 'zh':
        converter = opencc.OpenCC('t2s')
        orig_transcript = converter.convert(orig_transcript)
        transcribe_state = align(traditional_to_simplified(segments), audio_path)
        transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
    elif language == 'en':
        orig_transcript = orig_transcript.lower()
        target_transcript = target_transcript.lower()
        transcribe_state = align(segments, audio_path)
    print(orig_transcript)
    print(target_transcript)

    if mode == "TTS":
        info = torchaudio.info(audio_path)
        duration = info.num_frames / info.sample_rate
        cut_length = duration
        # Cut long audio for tts
        if duration > prompt_length:
            seg_num = len(transcribe_state['segments'])
            for i in range(seg_num):
                words = transcribe_state['segments'][i]['words']
                for item in words:
                    if item['end'] >= prompt_length:
                        cut_length = min(item['end'], cut_length)

        audio, _ = librosa.load(audio_path, sr=16000, duration=cut_length)
        sf.write(audio_path, audio, 16000)
        [orig_transcript, segments, _] = transcribe(audio_path)
        
        if language == 'zh':
            converter = opencc.OpenCC('t2s')
            orig_transcript = converter.convert(orig_transcript)
            transcribe_state = align(traditional_to_simplified(segments), audio_path)
            transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
        elif language == 'en':
            orig_transcript = orig_transcript.lower()
            target_transcript = target_transcript.lower()
            transcribe_state = align(segments, audio_path)
        print(orig_transcript)
        target_transcript_copy = target_transcript # for tts cut out
        if language == 'en':
            target_transcript_copy = target_transcript_copy.split(' ')[0]
        elif language == 'zh':
            target_transcript_copy = target_transcript_copy[0]
        target_transcript = orig_transcript + ' ' + target_transcript if language == 'en' else orig_transcript + target_transcript
        print(target_transcript)

    if mode == "Edit":
        operations, orig_spans = parse_edit_en(orig_transcript, target_transcript) if language == 'en' else parse_edit_zh(orig_transcript, target_transcript)
        print(operations)
        print("orig_spans: ", orig_spans)
        
        if len(orig_spans) > 3:
            raise gr.Error("Current model only supports maximum 3 editings")
            
        starting_intervals = []
        ending_intervals = []
        for orig_span in orig_spans:
            start, end = get_mask_interval(transcribe_state, orig_span)
            starting_intervals.append(start)
            ending_intervals.append(end)
    
        print("intervals: ", starting_intervals, ending_intervals)
    
        info = torchaudio.info(audio_path)
        audio_dur = info.num_frames / info.sample_rate
        
        def combine_spans(spans, threshold=0.2):
            spans.sort(key=lambda x: x[0])
            combined_spans = []
            current_span = spans[0]
    
            for i in range(1, len(spans)):
                next_span = spans[i]
                if current_span[1] >= next_span[0] - threshold:
                    current_span[1] = max(current_span[1], next_span[1])
                else:
                    combined_spans.append(current_span)
                    current_span = next_span
            combined_spans.append(current_span)
            return combined_spans
        
        morphed_span = [[max(start - sub_amount, 0), min(end + sub_amount, audio_dur)]
                        for start, end in zip(starting_intervals, ending_intervals)] # in seconds
        morphed_span = combine_spans(morphed_span, threshold=0.2)
        print("morphed_spans: ", morphed_span)
        mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
        mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
    else:
        info = torchaudio.info(audio_path)
        audio_dur = info.num_frames / info.sample_rate
        
        morphed_span = [(audio_dur, audio_dur)] # in seconds
        mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
        mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
        print("mask_interval: ", mask_interval)

    decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
    
    tts = True if mode == "TTS" else False
    new_audio = inference_one_sample(
        ssrspeech_model["model"],
        ssrspeech_model["config"],
        ssrspeech_model["phn2num"],
        ssrspeech_model["text_tokenizer"], 
        ssrspeech_model["audio_tokenizer"],
        audio_path, orig_transcript, target_transcript, mask_interval,
        cfg_coef, aug_text, False, True, tts,
        device, decode_config
    )
    audio_tensors = []
    # save segments for comparison
    new_audio = new_audio[0].cpu()
    torchaudio.save(audio_path, new_audio, codec_audio_sr)
    if tts: # remove the start parts
        [new_transcript, new_segments, _] = transcribe(audio_path)
        if language == 'zh':
            transcribe_state = align(traditional_to_simplified(new_segments), audio_path)
            transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
            tmp1 = transcribe_state['segments'][0]['words'][0]['word']
            tmp2 = target_transcript_copy
        elif language == 'en':
            transcribe_state = align(new_segments, audio_path)
            tmp1 = transcribe_state['segments'][0]['words'][0]['word'].lower()
            tmp2 = target_transcript_copy.lower()
        if tmp1 == tmp2:
            offset = transcribe_state['segments'][0]['words'][0]['start']
        else:
            offset = transcribe_state['segments'][0]['words'][1]['start']
        
        new_audio, _ = torchaudio.load(audio_path, frame_offset=int(offset*codec_audio_sr))
    audio_tensors.append(new_audio)
    output_audio = get_output_audio(audio_tensors, codec_audio_sr)
    
    success_message = "<span style='color:green;'>Success: Inference successfully!</span>"
    return output_audio, success_message


demo_original_transcript = "Gwynplaine had, besides, for his work and for his feats of strength, round his neck and over his shoulders, an esclavine of leather."

demo_text = {
    "TTS": {
        "regular": "Gwynplaine had, besides, for his work and for his feats of strength, I cannot believe that the same model can also do text to speech synthesis too!"
    },
    "Edit": {
        "regular": "Gwynplaine had, besides, for his work and for his feats of strength, take over the stage for half an hour, an esclavine of leather."
    },
}

def get_app():
    with gr.Blocks() as app:
        with gr.Row():
            with gr.Column(scale=2):
                load_models_btn = gr.Button(value="Load models")
            with gr.Column(scale=5):
                with gr.Accordion("Select models", open=False) as models_selector:
                    with gr.Row():
                        ssrspeech_model_choice = gr.Radio(label="ssrspeech model", value="English",
                                                        choices=["English", "Mandarin"])

        with gr.Row():
            with gr.Column(scale=2):
                input_audio = gr.Audio(value=f"{DEMO_PATH}/5895_34622_000026_000002.wav", label="Input Audio", type="filepath", interactive=True)
                with gr.Group():
                    original_transcript = gr.Textbox(label="Original transcript", lines=5, value=demo_original_transcript,
                                                    info="Use whisperx model to get the transcript.")
                    transcribe_btn = gr.Button(value="Transcribe")

            with gr.Column(scale=3):
                with gr.Group():
                    transcript = gr.Textbox(label="Text", lines=7, value=demo_text["Edit"]["regular"])

                    with gr.Row():
                        mode = gr.Radio(label="Mode", choices=["Edit", "TTS"], value="Edit")

                    run_btn = gr.Button(value="Run")

            with gr.Column(scale=2):
                output_audio = gr.Audio(label="Output Audio")

        with gr.Row():
            with gr.Accordion("Generation Parameters - change these if you are unhappy with the generation", open=False):
                stop_repetition = gr.Radio(label="stop_repetition", choices=[-1, 1, 2, 3, 4], value=2,
                                        info="if there are long silence in the generated audio, reduce the stop_repetition to 2 or 1. -1 = disabled")
                seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
                kvcache = gr.Radio(label="kvcache", choices=[0, 1], value=1,
                                    info="set to 0 to use less VRAM, but with slower inference")
                aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1,
                                    info="set to 1 to use cfg")
                cfg_coef = gr.Number(label="cfg_coef", value=1.5,
                                    info="cfg guidance scale, 1.5 is a good value, change if you don't like the results")
                prompt_length = gr.Number(label="prompt_length", value=3,
                                    info="used for tts prompt, will automatically cut the prompt audio to this length")
                sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment, change if you don't like the results")
                top_p = gr.Number(label="top_p", value=0.8, info="0.9 is a good value, 0.8 is also good")
                temperature = gr.Number(label="temperature", value=1, info="haven't try other values, do not change")
                top_k = gr.Number(label="top_k", value=0, info="0 means we don't use topk sampling, because we use topp sampling")
                codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000, info='encodec specific, do not change')
                codec_sr = gr.Number(label="codec_sr", value=50, info='encodec specific, do not change')
                silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]", info="encodec specific, do not change")

        success_output = gr.HTML()

        load_models_btn.click(fn=load_models,
                            inputs=[ssrspeech_model_choice],
                            outputs=[models_selector, success_output])

        semgents = gr.State() # not used
        transcribe_btn.click(fn=transcribe,
                            inputs=[input_audio],
                            outputs=[original_transcript, semgents, success_output])
        
        run_btn.click(fn=run,
                    inputs=[
                        seed, sub_amount, ssrspeech_model_choice,
                        codec_audio_sr, codec_sr,
                        top_k, top_p, temperature, stop_repetition, kvcache, silence_tokens, 
                        aug_text, cfg_coef, prompt_length, 
                        input_audio, original_transcript, transcript,
                        mode
                    ],
                    outputs=[output_audio, success_output])

    return app


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description="Ssrspeech gradio app.")
    
    parser.add_argument("--demo-path", default="./demo", help="Path to demo directory")
    parser.add_argument("--tmp-path", default="./demo/temp", help="Path to tmp directory")
    parser.add_argument("--models-path", default="./pretrained_models", help="Path to ssrspeech models directory")
    parser.add_argument("--port", default=7860, type=int, help="App port")
    parser.add_argument("--share", action="store_true", help="Launch with public url")

    os.environ["USER"] = os.getenv("USER", "user")
    args = parser.parse_args()
    DEMO_PATH = args.demo_path
    TMP_PATH = args.tmp_path
    MODELS_PATH = args.models_path

    app = get_app()
    app.queue().launch(share=args.share, server_port=args.port)