Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,195 Bytes
0203722 6210885 0203722 1fa352f 0203722 6210885 0203722 6210885 0203722 68683f4 0203722 68683f4 0203722 68683f4 0203722 68683f4 0203722 68683f4 0203722 68683f4 0203722 68683f4 0203722 68683f4 0203722 68683f4 0203722 6464e1d 0203722 4927550 0203722 97bf543 0203722 d78dd91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
import os
import re
from num2words import num2words
import gradio as gr
import torch
import torchaudio
from data.tokenizer import (
AudioTokenizer,
TextTokenizer,
)
from edit_utils_zh import parse_edit_zh
from edit_utils_en import parse_edit_en
from edit_utils_zh import parse_tts_zh
from edit_utils_en import parse_tts_en
from inference_scale import inference_one_sample
import librosa
import soundfile as sf
from models import ssr
import io
import numpy as np
import random
import uuid
import spaces
import nltk
nltk.download('punkt')
DEMO_PATH = os.getenv("DEMO_PATH", "./demo")
TMP_PATH = os.getenv("TMP_PATH", "./demo/temp")
MODELS_PATH = os.getenv("MODELS_PATH", "./pretrained_models")
device = "cuda" if torch.cuda.is_available() else "cpu"
whisper_model, align_model, ssrspeech_model = None, None, None
_whitespace_re = re.compile(r"\s+")
def get_random_string():
return "".join(str(uuid.uuid4()).split("-"))
@spaces.GPU(duration=30)
def seed_everything(seed):
if seed != -1:
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def get_mask_interval(transcribe_state, word_span):
print(transcribe_state)
seg_num = len(transcribe_state['segments'])
data = []
for i in range(seg_num):
words = transcribe_state['segments'][i]['words']
for item in words:
data.append([item['start'], item['end'], item['word']])
s, e = word_span[0], word_span[1]
assert s <= e, f"s:{s}, e:{e}"
assert s >= 0, f"s:{s}"
assert e <= len(data), f"e:{e}"
if e == 0: # start
start = 0.
end = float(data[0][0])
elif s == len(data): # end
start = float(data[-1][1])
end = float(data[-1][1]) # don't know the end yet
elif s == e: # insert
start = float(data[s-1][1])
end = float(data[s][0])
else:
start = float(data[s-1][1]) if s > 0 else float(data[s][0])
end = float(data[e][0]) if e < len(data) else float(data[-1][1])
return (start, end)
@spaces.GPU(duration=120)
class WhisperxAlignModel:
def __init__(self):
from whisperx import load_align_model
self.model, self.metadata = load_align_model(language_code="en", device=device)
def align(self, segments, audio_path):
from whisperx import align, load_audio
audio = load_audio(audio_path)
return align(segments, self.model, self.metadata, audio, device, return_char_alignments=False)["segments"]
@spaces.GPU(duration=120)
class WhisperModel:
def __init__(self, model_name):
from whisper import load_model
self.model = load_model(model_name, device)
from whisper.tokenizer import get_tokenizer
tokenizer = get_tokenizer(multilingual=False)
self.supress_tokens = [-1] + [
i
for i in range(tokenizer.eot)
if all(c in "0123456789" for c in tokenizer.decode([i]).removeprefix(" "))
]
def transcribe(self, audio_path):
return self.model.transcribe(audio_path, suppress_tokens=self.supress_tokens, word_timestamps=True)["segments"]
@spaces.GPU(duration=120)
class WhisperxModel:
def __init__(self, model_name, align_model: WhisperxAlignModel):
from whisperx import load_model
self.model = load_model(model_name, device, asr_options={"suppress_numerals": True, "max_new_tokens": None, "clip_timestamps": None, "hallucination_silence_threshold": None})
self.align_model = align_model
def transcribe(self, audio_path):
segments = self.model.transcribe(audio_path, batch_size=8)["segments"]
for segment in segments:
segment['text'] = replace_numbers_with_words(segment['text'])
return self.align_model.align(segments, audio_path)
@spaces.GPU(duration=120)
def load_models(whisper_backend_name, whisper_model_name, alignment_model_name, ssrspeech_model_name):
global transcribe_model, align_model, ssrspeech_model
if ssrspeech_model_name == "English":
ssrspeech_model_name = "English"
text_tokenizer = TextTokenizer(backend="espeak")
elif ssrspeech_model_name == "Mandarin":
ssrspeech_model_name = "Mandarin"
text_tokenizer = TextTokenizer(backend="espeak", language='cmn')
if alignment_model_name is not None:
align_model = WhisperxAlignModel()
if whisper_model_name is not None:
if whisper_backend_name == "whisper":
transcribe_model = WhisperModel(whisper_model_name)
else:
if align_model is None:
raise gr.Error("Align model required for whisperx backend")
transcribe_model = WhisperxModel(whisper_model_name, align_model)
ssrspeech_fn = f"{MODELS_PATH}/{ssrspeech_model_name}.pth"
if not os.path.exists(ssrspeech_fn):
os.system(f"wget https://huggingface.co/westbrook/SSR-Speech-{ssrspeech_model_name}/resolve/main/{ssrspeech_model_name}.pth -O " + ssrspeech_fn)
ckpt = torch.load(ssrspeech_fn)
model = ssr.SSR_Speech(ckpt["config"])
model.load_state_dict(ckpt["model"])
config = model.args
phn2num = ckpt["phn2num"]
model.to(device)
encodec_fn = f"{MODELS_PATH}/wmencodec.th"
if not os.path.exists(encodec_fn):
os.system(f"wget https://huggingface.co/westbrook/SSR-Speech-English/resolve/main/wmencodec.th -O " + encodec_fn)
ssrspeech_model = {
"config": config,
"phn2num": phn2num,
"model": model,
"text_tokenizer": text_tokenizer,
"audio_tokenizer": AudioTokenizer(signature=encodec_fn)
}
return gr.Accordion()
def get_transcribe_state(segments):
words_info = [word_info for segment in segments for word_info in segment["words"]]
transcript = " ".join([segment["text"] for segment in segments])
transcript = transcript[1:] if transcript[0] == " " else transcript
return {
"segments": segments,
"transcript": transcript,
"words_info": words_info,
"transcript_with_start_time": " ".join([f"{word['start']} {word['word']}" for word in words_info]),
"transcript_with_end_time": " ".join([f"{word['word']} {word['end']}" for word in words_info]),
"word_bounds": [f"{word['start']} {word['word']} {word['end']}" for word in words_info]
}
@spaces.GPU(duration=60)
def transcribe(seed, audio_path):
if transcribe_model is None:
raise gr.Error("Transcription model not loaded")
seed_everything(seed)
segments = transcribe_model.transcribe(audio_path)
state = get_transcribe_state(segments)
success_message = "<span style='color:green;'>Success: Transcribe completed successfully!</span>"
return [
state["transcript"], state["transcript_with_start_time"], state["transcript_with_end_time"],
state, success_message
]
@spaces.GPU(duration=60)
def align_segments(transcript, audio_path):
from aeneas.executetask import ExecuteTask
from aeneas.task import Task
import json
config_string = 'task_language=eng|os_task_file_format=json|is_text_type=plain'
tmp_transcript_path = os.path.join(TMP_PATH, f"{get_random_string()}.txt")
tmp_sync_map_path = os.path.join(TMP_PATH, f"{get_random_string()}.json")
with open(tmp_transcript_path, "w") as f:
f.write(transcript)
task = Task(config_string=config_string)
task.audio_file_path_absolute = os.path.abspath(audio_path)
task.text_file_path_absolute = os.path.abspath(tmp_transcript_path)
task.sync_map_file_path_absolute = os.path.abspath(tmp_sync_map_path)
ExecuteTask(task).execute()
task.output_sync_map_file()
with open(tmp_sync_map_path, "r") as f:
return json.load(f)
@spaces.GPU(duration=90)
def align(seed, transcript, audio_path):
if align_model is None:
raise gr.Error("Align model not loaded")
seed_everything(seed)
transcript = replace_numbers_with_words(transcript).replace(" ", " ").replace(" ", " ")
fragments = align_segments(transcript, audio_path)
segments = [{
"start": float(fragment["begin"]),
"end": float(fragment["end"]),
"text": " ".join(fragment["lines"])
} for fragment in fragments["fragments"]]
segments = align_model.align(segments, audio_path)
state = get_transcribe_state(segments)
success_message = "<span style='color:green;'>Success: Alignment completed successfully!</span>"
return [
state["transcript_with_start_time"], state["transcript_with_end_time"],
state, success_message
]
def get_output_audio(audio_tensors, codec_audio_sr):
result = torch.cat(audio_tensors, 1)
buffer = io.BytesIO()
torchaudio.save(buffer, result, int(codec_audio_sr), format="wav")
buffer.seek(0)
return buffer.read()
def replace_numbers_with_words(sentence):
sentence = re.sub(r'(\d+)', r' \1 ', sentence) # add spaces around numbers
def replace_with_words(match):
num = match.group(0)
try:
return num2words(num) # Convert numbers to words
except:
return num # In case num2words fails (unlikely with digits but just to be safe)
return re.sub(r'\b\d+\b', replace_with_words, sentence) # Regular expression that matches numbers
@spaces.GPU(duration=90)
def run(seed, sub_amount, ssrspeech_model_choice, codec_audio_sr, codec_sr, top_k, top_p, temperature,
stop_repetition, kvcache, silence_tokens, aug_text, cfg_coef,
audio_path, transcribe_state, original_transcript, transcript,
mode, selected_sentence, previous_audio_tensors):
aug_text = True if aug_text == 1 else False
if ssrspeech_model is None:
raise gr.Error("ssrspeech model not loaded")
# resample audio
audio, _ = librosa.load(audio_path, sr=16000)
sf.write(audio_path, audio, 16000)
seed_everything(seed)
transcript = replace_numbers_with_words(transcript).replace(" ", " ").replace(" ", " ") # replace numbers with words, so that the phonemizer can do a better job
if mode == "Rerun":
colon_position = selected_sentence.find(':')
selected_sentence_idx = int(selected_sentence[:colon_position])
sentences = [selected_sentence[colon_position + 1:]]
else:
sentences = [transcript.replace("\n", " ")]
audio_tensors = []
inference_transcript = ""
for sentence in sentences:
decode_config = {"top_k": top_k, "top_p": top_p, "temperature": temperature, "stop_repetition": stop_repetition,
"kvcache": kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
# run the script to turn user input to the format that the model can take
if mode == "Edit":
operations, orig_spans = parse_edit_en(original_transcript, sentence) if ssrspeech_model_choice == 'English' else parse_edit_zh(original_transcript, sentence)
print(operations)
print("orig_spans: ", orig_spans)
if len(orig_spans) > 3:
raise gr.Error("Current model only supports maximum 3 editings")
starting_intervals = []
ending_intervals = []
for orig_span in orig_spans:
start, end = get_mask_interval(transcribe_state, orig_span)
starting_intervals.append(start)
ending_intervals.append(end)
print("intervals: ", starting_intervals, ending_intervals)
info = torchaudio.info(audio_path)
audio_dur = info.num_frames / info.sample_rate
def combine_spans(spans, threshold=0.2):
spans.sort(key=lambda x: x[0])
combined_spans = []
current_span = spans[0]
for i in range(1, len(spans)):
next_span = spans[i]
if current_span[1] >= next_span[0] - threshold:
current_span[1] = max(current_span[1], next_span[1])
else:
combined_spans.append(current_span)
current_span = next_span
combined_spans.append(current_span)
return combined_spans
morphed_span = [[max(start - sub_amount, 0), min(end + sub_amount, audio_dur)]
for start, end in zip(starting_intervals, ending_intervals)] # in seconds
morphed_span = combine_spans(morphed_span, threshold=0.2)
print("morphed_spans: ", morphed_span)
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
gen_audio = inference_one_sample(
ssrspeech_model["model"],
ssrspeech_model["config"],
ssrspeech_model["phn2num"],
ssrspeech_model["text_tokenizer"],
ssrspeech_model["audio_tokenizer"],
audio_path, original_transcript, sentence, mask_interval,
cfg_coef, aug_text, False, True, False,
device, decode_config
)
else:
orig_spans = parse_tts_en(original_transcript, sentence) if ssrspeech_model_choice == 'English' else parse_tts_zh(original_transcript, sentence)
print("orig_spans: ", orig_spans)
starting_intervals = []
ending_intervals = []
for orig_span in orig_spans:
start, end = get_mask_interval(transcribe_state, orig_span)
starting_intervals.append(start)
ending_intervals.append(end)
print("intervals: ", starting_intervals, ending_intervals)
info = torchaudio.info(audio_path)
audio_dur = info.num_frames / info.sample_rate
morphed_span = [(max(start, 1/codec_sr), min(end, audio_dur))
for start, end in zip(starting_intervals, ending_intervals)] # in seconds
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
print("mask_interval: ", mask_interval)
gen_audio = inference_one_sample(
ssrspeech_model["model"],
ssrspeech_model["config"],
ssrspeech_model["phn2num"],
ssrspeech_model["text_tokenizer"],
ssrspeech_model["audio_tokenizer"],
audio_path, original_transcript, sentence, mask_interval,
cfg_coef, aug_text, False, True, True,
device, decode_config
)
gen_audio = gen_audio[0].cpu()
audio_tensors.append(gen_audio)
if mode != "Rerun":
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
sentences = [f"{idx}: {text}" for idx, text in enumerate(sentences)]
component = gr.Dropdown(choices=sentences, value=sentences[0])
return output_audio, inference_transcript, component, audio_tensors
else:
previous_audio_tensors[selected_sentence_idx] = audio_tensors[0]
output_audio = get_output_audio(previous_audio_tensors, codec_audio_sr)
sentence_audio = get_output_audio(audio_tensors, codec_audio_sr)
return output_audio, inference_transcript, sentence_audio, previous_audio_tensors
def load_sentence(selected_sentence, codec_audio_sr, audio_tensors):
if selected_sentence is None:
return None
colon_position = selected_sentence.find(':')
selected_sentence_idx = int(selected_sentence[:colon_position])
return get_output_audio([audio_tensors[selected_sentence_idx]], codec_audio_sr)
smart_transcript_info = """
If enabled, the target transcript will be constructed for you:</br>
- In TTS and Long TTS mode just write the text you want to synthesize.</br>
- In Edit mode just write the text to replace selected editing segment.</br>
If disabled, you should write the target transcript yourself:</br>
- In TTS mode write prompt transcript followed by generation transcript.</br>
- In Long TTS select split by newline (<b>SENTENCE SPLIT WON'T WORK</b>) and start each line with a prompt transcript.</br>
- In Edit mode write full prompt</br>
"""
demo_original_transcript = "Gwynplaine had, besides, for his work and for his feats of strength, round his neck and over his shoulders, an esclavine of leather."
demo_text = {
"TTS": {
"smart": "I cannot believe that the same model can also do text to speech synthesis too!",
"regular": "Gwynplaine had, besides, for his work and for his feats of strength, I cannot believe that the same model can also do text to speech synthesis too!"
},
"Edit": {
"smart": "take over the stage for half an hour,",
"regular": "Gwynplaine had, besides, for his work and for his feats of strength, take over the stage for half an hour, an esclavine of leather."
},
"Long TTS": {
"smart": "You can run the model on a big text!\n"
"Just write it line-by-line. Or sentence-by-sentence.\n"
"If some sentences sound odd, just rerun the model on them, no need to generate the whole text again!",
"regular": "Gwynplaine had, besides, for his work and for his feats of strength, You can run the model on a big text!\n"
"Gwynplaine had, besides, for his work and for his feats of strength, Just write it line-by-line. Or sentence-by-sentence.\n"
"Gwynplaine had, besides, for his work and for his feats of strength, If some sentences sound odd, just rerun the model on them, no need to generate the whole text again!"
}
}
all_demo_texts = {vv for k, v in demo_text.items() for kk, vv in v.items()}
demo_words = ['0.069 Gwynplain 0.611', '0.671 had, 0.912', '0.952 besides, 1.414', '1.494 for 1.634', '1.695 his 1.835', '1.915 work 2.136', '2.196 and 2.297', '2.337 for 2.517', '2.557 his 2.678', '2.758 feats 3.019', '3.079 of 3.139', '3.2 strength, 3.561', '4.022 round 4.263', '4.303 his 4.444', '4.524 neck 4.705', '4.745 and 4.825', '4.905 over 5.086', '5.146 his 5.266', '5.307 shoulders, 5.768', '6.23 an 6.33', '6.531 esclavine 7.133', '7.213 of 7.293', '7.353 leather. 7.614']
demo_words_info = [{'word': 'Gwynplain', 'start': 0.069, 'end': 0.611, 'score': 0.833}, {'word': 'had,', 'start': 0.671, 'end': 0.912, 'score': 0.879}, {'word': 'besides,', 'start': 0.952, 'end': 1.414, 'score': 0.863}, {'word': 'for', 'start': 1.494, 'end': 1.634, 'score': 0.89}, {'word': 'his', 'start': 1.695, 'end': 1.835, 'score': 0.669}, {'word': 'work', 'start': 1.915, 'end': 2.136, 'score': 0.916}, {'word': 'and', 'start': 2.196, 'end': 2.297, 'score': 0.766}, {'word': 'for', 'start': 2.337, 'end': 2.517, 'score': 0.808}, {'word': 'his', 'start': 2.557, 'end': 2.678, 'score': 0.786}, {'word': 'feats', 'start': 2.758, 'end': 3.019, 'score': 0.97}, {'word': 'of', 'start': 3.079, 'end': 3.139, 'score': 0.752}, {'word': 'strength,', 'start': 3.2, 'end': 3.561, 'score': 0.742}, {'word': 'round', 'start': 4.022, 'end': 4.263, 'score': 0.916}, {'word': 'his', 'start': 4.303, 'end': 4.444, 'score': 0.666}, {'word': 'neck', 'start': 4.524, 'end': 4.705, 'score': 0.908}, {'word': 'and', 'start': 4.745, 'end': 4.825, 'score': 0.882}, {'word': 'over', 'start': 4.905, 'end': 5.086, 'score': 0.847}, {'word': 'his', 'start': 5.146, 'end': 5.266, 'score': 0.791}, {'word': 'shoulders,', 'start': 5.307, 'end': 5.768, 'score': 0.729}, {'word': 'an', 'start': 6.23, 'end': 6.33, 'score': 0.854}, {'word': 'esclavine', 'start': 6.531, 'end': 7.133, 'score': 0.803}, {'word': 'of', 'start': 7.213, 'end': 7.293, 'score': 0.772}, {'word': 'leather.', 'start': 7.353, 'end': 7.614, 'score': 0.896}]
def update_demo(mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word):
if transcript not in all_demo_texts:
return transcript, edit_from_word, edit_to_word
replace_half = edit_word_mode == "Replace half"
change_edit_from_word = edit_from_word == demo_words[2] or edit_from_word == demo_words[3]
change_edit_to_word = edit_to_word == demo_words[11] or edit_to_word == demo_words[12]
demo_edit_from_word_value = demo_words[2] if replace_half else demo_words[3]
demo_edit_to_word_value = demo_words[12] if replace_half else demo_words[11]
return [
demo_text[mode]["smart" if smart_transcript else "regular"],
demo_edit_from_word_value if change_edit_from_word else edit_from_word,
demo_edit_to_word_value if change_edit_to_word else edit_to_word,
]
def get_app():
print('debug4')
with gr.Blocks() as app:
with gr.Row():
with gr.Column(scale=2):
load_models_btn = gr.Button(value="Load models")
with gr.Column(scale=5):
with gr.Accordion("Select models", open=False) as models_selector:
with gr.Row():
ssrspeech_model_choice = gr.Radio(label="ssrspeech model", value="English",
choices=["English", "Mandarin"])
whisper_backend_choice = gr.Radio(label="Whisper backend", value="whisperX", choices=["whisperX", "whisper"])
whisper_model_choice = gr.Radio(label="Whisper model", value="base.en",
choices=[None, "base.en", "small.en", "medium.en", "large"])
align_model_choice = gr.Radio(label="Forced alignment model", value="whisperX", choices=["whisperX", None])
with gr.Row():
with gr.Column(scale=2):
input_audio = gr.Audio(value=f"{DEMO_PATH}/5895_34622_000026_000002.wav", label="Input Audio", type="filepath", interactive=True)
with gr.Group():
original_transcript = gr.Textbox(label="Original transcript", lines=5, value=demo_original_transcript,
info="Use whisperx model to get the transcript. Fix and align it if necessary.")
with gr.Accordion("Word start time", open=False):
transcript_with_start_time = gr.Textbox(label="Start time", lines=5, interactive=False, info="Start time before each word")
with gr.Accordion("Word end time", open=False):
transcript_with_end_time = gr.Textbox(label="End time", lines=5, interactive=False, info="End time after each word")
transcribe_btn = gr.Button(value="Transcribe")
align_btn = gr.Button(value="Align")
with gr.Column(scale=3):
with gr.Group():
transcript = gr.Textbox(label="Text", lines=7, value=demo_text["TTS"]["smart"])
with gr.Row():
mode = gr.Radio(label="Mode", choices=["Edit", "TTS"], value="Edit")
run_btn = gr.Button(value="Run")
with gr.Column(scale=2):
output_audio = gr.Audio(label="Output Audio")
with gr.Accordion("Inference transcript", open=False):
inference_transcript = gr.Textbox(label="Inference transcript", lines=5, interactive=False,
info="Inference was performed on this transcript.")
with gr.Group(visible=False) as long_tts_sentence_editor:
sentence_selector = gr.Dropdown(label="Sentence", value=None,
info="Select sentence you want to regenerate")
sentence_audio = gr.Audio(label="Sentence Audio", scale=2)
rerun_btn = gr.Button(value="Rerun")
with gr.Row():
with gr.Accordion("Generation Parameters - change these if you are unhappy with the generation", open=False):
stop_repetition = gr.Radio(label="stop_repetition", choices=[-1, 1, 2, 3, 4], value=2,
info="if there are long silence in the generated audio, reduce the stop_repetition to 2 or 1. -1 = disabled")
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
kvcache = gr.Radio(label="kvcache", choices=[0, 1], value=1,
info="set to 0 to use less VRAM, but with slower inference")
aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1,
info="set to 1 to use cfg")
cfg_coef = gr.Number(label="cfg_coef", value=1.5,
info="cfg guidance scale, 1.5 is a good value")
sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment")
top_p = gr.Number(label="top_p", value=0.8, info="0.9 is a good value, 0.8 is also good")
temperature = gr.Number(label="temperature", value=1, info="haven't try other values, do not recommend to change")
top_k = gr.Number(label="top_k", value=0, info="0 means we don't use topk sampling, because we use topp sampling")
codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000, info='encodec specific, Do not change')
codec_sr = gr.Number(label="codec_sr", value=50, info='encodec specific, Do not change')
silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]", info="encodec specific, do not change")
success_output = gr.HTML()
audio_tensors = gr.State()
transcribe_state = gr.State(value={"words_info": demo_words_info})
load_models_btn.click(fn=load_models,
inputs=[whisper_backend_choice, whisper_model_choice, align_model_choice, ssrspeech_model_choice],
outputs=[models_selector])
transcribe_btn.click(fn=transcribe,
inputs=[seed, input_audio],
outputs=[original_transcript, transcript_with_start_time, transcript_with_end_time, transcribe_state, success_output])
align_btn.click(fn=align,
inputs=[seed, original_transcript, input_audio],
outputs=[transcript_with_start_time, transcript_with_end_time, transcribe_state, success_output])
run_btn.click(fn=run,
inputs=[
seed, sub_amount, ssrspeech_model_choice,
codec_audio_sr, codec_sr,
top_k, top_p, temperature,
stop_repetition,
kvcache, silence_tokens, aug_text, cfg_coef,
input_audio, transcribe_state, original_transcript, transcript,
mode, sentence_selector, audio_tensors
],
outputs=[output_audio, inference_transcript, sentence_selector, audio_tensors])
sentence_selector.change(fn=load_sentence,
inputs=[sentence_selector, codec_audio_sr, audio_tensors],
outputs=[sentence_audio])
rerun_btn.click(fn=run,
inputs=[
seed, sub_amount, ssrspeech_model_choice,
codec_audio_sr, codec_sr,
top_k, top_p, temperature,
stop_repetition,
kvcache, silence_tokens, aug_text, cfg_coef,
input_audio, transcribe_state, original_transcript, transcript,
gr.State(value="Rerun"), sentence_selector, audio_tensors
],
outputs=[output_audio, inference_transcript, sentence_audio, audio_tensors])
return app
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Ssrspeech gradio app.")
parser.add_argument("--demo-path", default="./demo", help="Path to demo directory")
parser.add_argument("--tmp-path", default="./demo/temp", help="Path to tmp directory")
parser.add_argument("--models-path", default="./pretrained_models", help="Path to ssrspeech models directory")
parser.add_argument("--port", default=7860, type=int, help="App port")
parser.add_argument("--share", action="store_true", help="Launch with public url")
os.environ["USER"] = os.getenv("USER", "user")
args = parser.parse_args()
DEMO_PATH = args.demo_path
TMP_PATH = args.tmp_path
MODELS_PATH = args.models_path
app = get_app()
app.queue().launch(share=args.share, server_port=args.port)
|