File size: 4,335 Bytes
f5b4ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# @ [email protected]

import re
from argparse import Namespace

def extract_words(sentence):
    words = re.findall(r"\b[\w']+\b", sentence)
    return words

def levenshtein_distance(word1, word2):
    len1, len2 = len(word1), len(word2)
    # Initialize a matrix to store the edit distances and operations
    dp = [[(0, "") for _ in range(len2 + 1)] for _ in range(len1 + 1)]

    # Initialize the first row and column
    for i in range(len1 + 1):
        dp[i][0] = (i, "d" * i)
    for j in range(len2 + 1):
        dp[0][j] = (j, "i" * j)

    # Fill in the rest of the matrix
    for i in range(1, len1 + 1):
        for j in range(1, len2 + 1):
            cost = 0 if word1[i - 1] == word2[j - 1] else 1
            # Minimum of deletion, insertion, or substitution
            deletion = dp[i - 1][j][0] + 1
            insertion = dp[i][j - 1][0] + 1
            substitution = dp[i - 1][j - 1][0] + cost
            min_dist = min(deletion, insertion, substitution)

            # Determine which operation led to the minimum distance
            if min_dist == deletion:
                operation = dp[i - 1][j][1] + "d"
            elif min_dist == insertion:
                operation = dp[i][j - 1][1] + "i"
            else:
                operation = dp[i - 1][j - 1][1] + ("s" if cost else "=")

            dp[i][j] = (min_dist, operation)

    # Backtrack to find the operations and positions
    i, j = len1, len2
    positions = []

    while i > 0 and j > 0:
        if dp[i][j][1][-1] == "d":
            positions.append((i - 1, i, 'd'))
            i -= 1
        elif dp[i][j][1][-1] == "i":
            positions.append((i, i, 'i'))
            j -= 1
        else:
            if dp[i][j][1][-1] == "s":
                positions.append((i - 1, i, 's'))
            i -= 1
            j -= 1

    while i > 0:
        positions.append((i - 1, i, 'd'))
        i -= 1

    while j > 0:
        positions.append((i, i, 'i'))
        j -= 1

    return dp[len1][len2][0], dp[len1][len2][1], positions[::-1]

def extract_spans(positions, orig_len):
    spans = []
    if not positions:
        return spans

    current_start, current_end, current_op = positions[0]
    
    for pos in positions[1:]:
        start, end, op = pos
        if op == current_op and (start == current_end or start == current_end + 1):
            current_end = end
        else:
            spans.append((current_start, current_end))
            current_start, current_end, current_op = start, end, op

    spans.append((current_start, current_end))
    
    # Handle insertions at the end
    if spans[-1][0] >= orig_len:
        spans[-1] = (orig_len, orig_len)

    return spans

def combine_nearby_spans(spans):
    if not spans:
        return spans

    combined_spans = [spans[0]]
    for current_span in spans[1:]:
        last_span = combined_spans[-1]
        if last_span[1] + 1 >= current_span[0]:  # Check if spans are adjacent or overlap
            combined_spans[-1] = (last_span[0], max(last_span[1], current_span[1]))
        else:
            combined_spans.append(current_span)
    return combined_spans

def parse_edit_en(orig_transcript, trgt_transcript):
    word1 = extract_words(orig_transcript)
    word2 = extract_words(trgt_transcript)
    distance, operations, positions = levenshtein_distance(word1, word2)
    spans = extract_spans(positions, len(word1))
    spans = combine_nearby_spans(spans)
    return operations, spans

def parse_tts_en(orig_transcript, trgt_transcript):
    word1 = extract_words(orig_transcript)
    word2 = extract_words(trgt_transcript)
    distance, operations, positions = levenshtein_distance(word1, word2)
    spans = extract_spans(positions, len(word1))
    spans = [[spans[0][0], len(word1)]]
    return spans

if __name__ == "__main__":
    orig_transcript =    "But when I had approached so near to them The common object, which the sense deceives, Lost not by distance any of its marks,"
    trgt_transcript =  "But when I saw the mirage of the lake in the distance, which the sense deceives, Lost not by distance any of its marks,"

    operations, spans = parse_edit(orig_transcript, trgt_transcript)
    print("Operations:", operations)
    print("Spans:", spans)

    spans_tts = parse_tts(orig_transcript, trgt_transcript)
    print("TTS Spans:", spans_tts)