Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,8 @@ from data.tokenizer import (
|
|
10 |
)
|
11 |
from edit_utils_en import parse_edit_en
|
12 |
from edit_utils_en import parse_tts_en
|
|
|
|
|
13 |
from inference_scale import inference_one_sample
|
14 |
import librosa
|
15 |
import soundfile as sf
|
@@ -70,37 +72,57 @@ def get_mask_interval(transcribe_state, word_span):
|
|
70 |
|
71 |
return (start, end)
|
72 |
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
ssrspeech_model_name = "English"
|
77 |
-
text_tokenizer = TextTokenizer(backend="espeak")
|
78 |
-
language = "en"
|
79 |
-
transcribe_model_name = "base.en"
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
os.system(f"wget https://huggingface.co/westbrook/SSR-Speech-{ssrspeech_model_name}/resolve/main/{ssrspeech_model_name}.pth -O " + ssrspeech_fn)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
encodec_fn = f"{MODELS_PATH}/wmencodec.th"
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
"
|
98 |
-
"
|
99 |
-
"model": model,
|
100 |
-
"text_tokenizer": text_tokenizer,
|
101 |
"audio_tokenizer": AudioTokenizer(signature=encodec_fn)
|
102 |
}
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
|
106 |
def get_transcribe_state(segments):
|
@@ -112,7 +134,9 @@ def get_transcribe_state(segments):
|
|
112 |
}
|
113 |
|
114 |
@spaces.GPU
|
115 |
-
def
|
|
|
|
|
116 |
transcribe_model = load_model(transcribe_model_name, device, asr_options={"suppress_numerals": True, "max_new_tokens": None, "clip_timestamps": None, "hallucination_silence_threshold": None}, language=language)
|
117 |
segments = transcribe_model.transcribe(audio_path, batch_size=8)["segments"]
|
118 |
for segment in segments:
|
@@ -126,9 +150,37 @@ def transcribe(audio_path):
|
|
126 |
state, success_message
|
127 |
]
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
@spaces.GPU
|
131 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
align_model, metadata = load_align_model(language_code=language, device=device)
|
133 |
audio = load_audio(audio_path)
|
134 |
segments = align_func(segments, align_model, metadata, audio, device, return_char_alignments=False)["segments"]
|
@@ -155,14 +207,18 @@ def replace_numbers_with_words(sentence):
|
|
155 |
return re.sub(r'\b\d+\b', replace_with_words, sentence) # Regular expression that matches numbers
|
156 |
|
157 |
@spaces.GPU
|
158 |
-
def
|
159 |
-
|
160 |
-
audio_path, original_transcript, transcript, mode):
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
165 |
|
|
|
166 |
seed_everything(seed)
|
167 |
|
168 |
# resample audio
|
@@ -173,118 +229,269 @@ def run(seed, sub_amount, codec_audio_sr, codec_sr, top_k, top_p, temperature,
|
|
173 |
target_transcript = replace_numbers_with_words(transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
174 |
orig_transcript = replace_numbers_with_words(original_transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
175 |
|
176 |
-
[orig_transcript, segments, _, _] =
|
177 |
orig_transcript = orig_transcript.lower()
|
178 |
target_transcript = target_transcript.lower()
|
179 |
-
transcribe_state,_ =
|
180 |
print(orig_transcript)
|
181 |
print(target_transcript)
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
seg_num = len(transcribe_state['segments'])
|
190 |
-
for i in range(seg_num):
|
191 |
-
words = transcribe_state['segments'][i]['words']
|
192 |
-
for item in words:
|
193 |
-
if item['end'] >= prompt_length:
|
194 |
-
cut_length = min(item['end'], cut_length)
|
195 |
-
|
196 |
-
audio, _ = librosa.load(audio_path, sr=16000, duration=cut_length)
|
197 |
-
sf.write(audio_path, audio, 16000)
|
198 |
-
[orig_transcript, segments, _, _] = transcribe(audio_path)
|
199 |
-
|
200 |
-
|
201 |
-
orig_transcript = orig_transcript.lower()
|
202 |
-
target_transcript = target_transcript.lower()
|
203 |
-
transcribe_state,_ = align(segments, audio_path)
|
204 |
-
print(orig_transcript)
|
205 |
-
target_transcript_copy = target_transcript # for tts cut out
|
206 |
-
target_transcript_copy = target_transcript_copy.split(' ')[0]
|
207 |
-
target_transcript = orig_transcript + ' ' + target_transcript
|
208 |
-
print(target_transcript)
|
209 |
-
|
210 |
-
if mode == "Edit":
|
211 |
-
operations, orig_spans = parse_edit_en(orig_transcript, target_transcript)
|
212 |
-
print(operations)
|
213 |
-
print("orig_spans: ", orig_spans)
|
214 |
-
|
215 |
-
if len(orig_spans) > 3:
|
216 |
-
raise gr.Error("Current model only supports maximum 3 editings")
|
217 |
-
|
218 |
-
starting_intervals = []
|
219 |
-
ending_intervals = []
|
220 |
-
for orig_span in orig_spans:
|
221 |
-
start, end = get_mask_interval(transcribe_state, orig_span)
|
222 |
-
starting_intervals.append(start)
|
223 |
-
ending_intervals.append(end)
|
224 |
-
|
225 |
-
print("intervals: ", starting_intervals, ending_intervals)
|
226 |
-
|
227 |
-
info = torchaudio.info(audio_path)
|
228 |
-
audio_dur = info.num_frames / info.sample_rate
|
229 |
-
|
230 |
-
def combine_spans(spans, threshold=0.2):
|
231 |
-
spans.sort(key=lambda x: x[0])
|
232 |
-
combined_spans = []
|
233 |
-
current_span = spans[0]
|
234 |
-
|
235 |
-
for i in range(1, len(spans)):
|
236 |
-
next_span = spans[i]
|
237 |
-
if current_span[1] >= next_span[0] - threshold:
|
238 |
-
current_span[1] = max(current_span[1], next_span[1])
|
239 |
-
else:
|
240 |
-
combined_spans.append(current_span)
|
241 |
-
current_span = next_span
|
242 |
-
combined_spans.append(current_span)
|
243 |
-
return combined_spans
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
else:
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
|
261 |
|
262 |
-
tts = True if mode == "TTS" else False
|
263 |
new_audio = inference_one_sample(
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
audio_path, orig_transcript, target_transcript, mask_interval,
|
270 |
-
cfg_coef, aug_text, False, True,
|
271 |
device, decode_config
|
272 |
)
|
273 |
audio_tensors = []
|
274 |
# save segments for comparison
|
275 |
new_audio = new_audio[0].cpu()
|
276 |
torchaudio.save(audio_path, new_audio, codec_audio_sr)
|
277 |
-
if tts: # remove the start parts
|
278 |
-
[new_transcript, new_segments, _, _] = transcribe(audio_path)
|
279 |
-
transcribe_state,_ = align(new_segments, audio_path)
|
280 |
-
tmp1 = transcribe_state['segments'][0]['words'][0]['word'].lower()
|
281 |
-
tmp2 = target_transcript_copy.lower()
|
282 |
-
if tmp1 == tmp2:
|
283 |
-
offset = transcribe_state['segments'][0]['words'][0]['start']
|
284 |
-
else:
|
285 |
-
offset = transcribe_state['segments'][0]['words'][1]['start']
|
286 |
-
|
287 |
-
new_audio, _ = torchaudio.load(audio_path, frame_offset=int(offset*codec_audio_sr))
|
288 |
audio_tensors.append(new_audio)
|
289 |
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
|
290 |
|
@@ -292,88 +499,112 @@ def run(seed, sub_amount, codec_audio_sr, codec_sr, top_k, top_p, temperature,
|
|
292 |
return output_audio, success_message
|
293 |
|
294 |
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
}
|
305 |
|
|
|
306 |
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
top_p = gr.Number(label="top_p", value=0.8, info="0.9 is a good value, 0.8 is also good")
|
352 |
-
temperature = gr.Number(label="temperature", value=1, info="haven't try other values, do not change")
|
353 |
-
top_k = gr.Number(label="top_k", value=0, info="0 means we don't use topk sampling, because we use topp sampling")
|
354 |
-
codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000, info='encodec specific, do not change')
|
355 |
-
codec_sr = gr.Number(label="codec_sr", value=50, info='encodec specific, do not change')
|
356 |
-
silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]", info="encodec specific, do not change")
|
357 |
-
|
358 |
-
success_output = gr.HTML()
|
359 |
-
|
360 |
-
semgents = gr.State() # not used
|
361 |
-
transcribe_btn.click(fn=transcribe,
|
362 |
-
inputs=[input_audio],
|
363 |
-
outputs=[original_transcript, semgents, success_output])
|
364 |
-
|
365 |
-
run_btn.click(fn=run,
|
366 |
-
inputs=[
|
367 |
-
seed, sub_amount,
|
368 |
-
codec_audio_sr, codec_sr,
|
369 |
-
top_k, top_p, temperature, stop_repetition, kvcache, silence_tokens,
|
370 |
-
aug_text, cfg_coef, prompt_length,
|
371 |
-
input_audio, original_transcript, transcript,
|
372 |
-
mode
|
373 |
-
],
|
374 |
-
outputs=[output_audio, success_output])
|
375 |
|
376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
378 |
|
379 |
if __name__ == "__main__":
|
@@ -393,5 +624,244 @@ if __name__ == "__main__":
|
|
393 |
TMP_PATH = args.tmp_path
|
394 |
MODELS_PATH = args.models_path
|
395 |
|
396 |
-
app = get_app()
|
397 |
-
app.queue().launch(share=args.share, server_port=args.port)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
)
|
11 |
from edit_utils_en import parse_edit_en
|
12 |
from edit_utils_en import parse_tts_en
|
13 |
+
from edit_utils_zh import parse_edit_zh
|
14 |
+
from edit_utils_zh import parse_tts_zh
|
15 |
from inference_scale import inference_one_sample
|
16 |
import librosa
|
17 |
import soundfile as sf
|
|
|
72 |
|
73 |
return (start, end)
|
74 |
|
75 |
+
def traditional_to_simplified(segments):
|
76 |
+
converter = opencc.OpenCC('t2s')
|
77 |
+
seg_num = len(segments)
|
78 |
+
for i in range(seg_num):
|
79 |
+
words = segments[i]['words']
|
80 |
+
for j in range(len(words)):
|
81 |
+
segments[i]['words'][j]['word'] = converter.convert(segments[i]['words'][j]['word'])
|
82 |
+
segments[i]['text'] = converter.convert(segments[i]['text'])
|
83 |
+
return segments
|
84 |
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
from whisperx import load_align_model, load_model, load_audio
|
87 |
+
from whisperx import align as align_func
|
|
|
88 |
|
89 |
+
# Load models
|
90 |
+
text_tokenizer_en = TextTokenizer(backend="espeak")
|
91 |
+
text_tokenizer_zh = TextTokenizer(backend="espeak", language='cmn')
|
92 |
+
|
93 |
+
ssrspeech_fn_en = f"{MODELS_PATH}/English.pth"
|
94 |
+
ckpt_en = torch.load(ssrspeech_fn_en)
|
95 |
+
model_en = ssr.SSR_Speech(ckpt_en["config"])
|
96 |
+
model_en.load_state_dict(ckpt_en["model"])
|
97 |
+
config_en = model_en.args
|
98 |
+
phn2num_en = ckpt_en["phn2num"]
|
99 |
+
model_en.to(device)
|
100 |
+
|
101 |
+
ssrspeech_fn_zh = f"{MODELS_PATH}/Mandarin.pth"
|
102 |
+
ckpt_zh = torch.load(ssrspeech_fn_zh)
|
103 |
+
model_zh = ssr.SSR_Speech(ckpt_zh["config"])
|
104 |
+
model_zh.load_state_dict(ckpt_zh["model"])
|
105 |
+
config_zh = model_zh.args
|
106 |
+
phn2num_zh = ckpt_zh["phn2num"]
|
107 |
+
model_zh.to(device)
|
108 |
|
109 |
encodec_fn = f"{MODELS_PATH}/wmencodec.th"
|
110 |
+
|
111 |
+
ssrspeech_model_en = {
|
112 |
+
"config": config_en,
|
113 |
+
"phn2num": phn2num_en,
|
114 |
+
"model": model_en,
|
115 |
+
"text_tokenizer": text_tokenizer_en,
|
|
|
|
|
116 |
"audio_tokenizer": AudioTokenizer(signature=encodec_fn)
|
117 |
}
|
118 |
|
119 |
+
ssrspeech_model_zh = {
|
120 |
+
"config": config_zh,
|
121 |
+
"phn2num": phn2num_zh,
|
122 |
+
"model": model_zh,
|
123 |
+
"text_tokenizer": text_tokenizer_zh,
|
124 |
+
"audio_tokenizer": AudioTokenizer(signature=encodec_fn)
|
125 |
+
}
|
126 |
|
127 |
|
128 |
def get_transcribe_state(segments):
|
|
|
134 |
}
|
135 |
|
136 |
@spaces.GPU
|
137 |
+
def transcribe_en(audio_path):
|
138 |
+
language = "en"
|
139 |
+
transcribe_model_name = "base.en"
|
140 |
transcribe_model = load_model(transcribe_model_name, device, asr_options={"suppress_numerals": True, "max_new_tokens": None, "clip_timestamps": None, "hallucination_silence_threshold": None}, language=language)
|
141 |
segments = transcribe_model.transcribe(audio_path, batch_size=8)["segments"]
|
142 |
for segment in segments:
|
|
|
150 |
state, success_message
|
151 |
]
|
152 |
|
153 |
+
@spaces.GPU
|
154 |
+
def transcribe_zh(audio_path):
|
155 |
+
language = "zh"
|
156 |
+
transcribe_model_name = "base"
|
157 |
+
transcribe_model = load_model(transcribe_model_name, device, asr_options={"suppress_numerals": True, "max_new_tokens": None, "clip_timestamps": None, "hallucination_silence_threshold": None}, language=language)
|
158 |
+
segments = transcribe_model.transcribe(audio_path, batch_size=8)["segments"]
|
159 |
+
for segment in segments:
|
160 |
+
segment['text'] = replace_numbers_with_words(segment['text'])
|
161 |
+
_, segments = align(segments, audio_path)
|
162 |
+
state = get_transcribe_state(segments)
|
163 |
+
success_message = "<span style='color:green;'>Success: Transcribe completed successfully!</span>"
|
164 |
+
|
165 |
+
return [
|
166 |
+
state["transcript"], state['segments'],
|
167 |
+
state, success_message
|
168 |
+
]
|
169 |
|
170 |
@spaces.GPU
|
171 |
+
def align_en(segments, audio_path):
|
172 |
+
language = "en"
|
173 |
+
align_model, metadata = load_align_model(language_code=language, device=device)
|
174 |
+
audio = load_audio(audio_path)
|
175 |
+
segments = align_func(segments, align_model, metadata, audio, device, return_char_alignments=False)["segments"]
|
176 |
+
state = get_transcribe_state(segments)
|
177 |
+
|
178 |
+
return state, segments
|
179 |
+
|
180 |
+
|
181 |
+
@spaces.GPU
|
182 |
+
def align_zh(segments, audio_path):
|
183 |
+
language = "zh"
|
184 |
align_model, metadata = load_align_model(language_code=language, device=device)
|
185 |
audio = load_audio(audio_path)
|
186 |
segments = align_func(segments, align_model, metadata, audio, device, return_char_alignments=False)["segments"]
|
|
|
207 |
return re.sub(r'\b\d+\b', replace_with_words, sentence) # Regular expression that matches numbers
|
208 |
|
209 |
@spaces.GPU
|
210 |
+
def run_edit_en(seed, sub_amount, aug_text, cfg_coef, prompt_length,
|
211 |
+
audio_path, original_transcript, transcript):
|
|
|
212 |
|
213 |
+
codec_audio_sr = 16000
|
214 |
+
codec_sr = 50
|
215 |
+
top_k = 0
|
216 |
+
top_p = 0.8
|
217 |
+
temperature = 1
|
218 |
+
kvcache = 1
|
219 |
+
stop_repetition = 2
|
220 |
|
221 |
+
aug_text = True if aug_text == 1 else False
|
222 |
seed_everything(seed)
|
223 |
|
224 |
# resample audio
|
|
|
229 |
target_transcript = replace_numbers_with_words(transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
230 |
orig_transcript = replace_numbers_with_words(original_transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
231 |
|
232 |
+
[orig_transcript, segments, _, _] = transcribe_en(audio_path)
|
233 |
orig_transcript = orig_transcript.lower()
|
234 |
target_transcript = target_transcript.lower()
|
235 |
+
transcribe_state,_ = align_en(segments, audio_path)
|
236 |
print(orig_transcript)
|
237 |
print(target_transcript)
|
238 |
|
239 |
+
operations, orig_spans = parse_edit_en(orig_transcript, target_transcript)
|
240 |
+
print(operations)
|
241 |
+
print("orig_spans: ", orig_spans)
|
242 |
+
|
243 |
+
if len(orig_spans) > 3:
|
244 |
+
raise gr.Error("Current model only supports maximum 3 editings")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
+
starting_intervals = []
|
247 |
+
ending_intervals = []
|
248 |
+
for orig_span in orig_spans:
|
249 |
+
start, end = get_mask_interval(transcribe_state, orig_span)
|
250 |
+
starting_intervals.append(start)
|
251 |
+
ending_intervals.append(end)
|
252 |
+
|
253 |
+
print("intervals: ", starting_intervals, ending_intervals)
|
254 |
+
|
255 |
+
info = torchaudio.info(audio_path)
|
256 |
+
audio_dur = info.num_frames / info.sample_rate
|
257 |
+
|
258 |
+
def combine_spans(spans, threshold=0.2):
|
259 |
+
spans.sort(key=lambda x: x[0])
|
260 |
+
combined_spans = []
|
261 |
+
current_span = spans[0]
|
262 |
+
|
263 |
+
for i in range(1, len(spans)):
|
264 |
+
next_span = spans[i]
|
265 |
+
if current_span[1] >= next_span[0] - threshold:
|
266 |
+
current_span[1] = max(current_span[1], next_span[1])
|
267 |
+
else:
|
268 |
+
combined_spans.append(current_span)
|
269 |
+
current_span = next_span
|
270 |
+
combined_spans.append(current_span)
|
271 |
+
return combined_spans
|
272 |
+
|
273 |
+
morphed_span = [[max(start - sub_amount, 0), min(end + sub_amount, audio_dur)]
|
274 |
+
for start, end in zip(starting_intervals, ending_intervals)] # in seconds
|
275 |
+
morphed_span = combine_spans(morphed_span, threshold=0.2)
|
276 |
+
print("morphed_spans: ", morphed_span)
|
277 |
+
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
|
278 |
+
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
|
279 |
+
|
280 |
+
decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
|
281 |
+
|
282 |
+
new_audio = inference_one_sample(
|
283 |
+
ssrspeech_model_en["model"],
|
284 |
+
ssrspeech_model_en["config"],
|
285 |
+
ssrspeech_model_en["phn2num"],
|
286 |
+
ssrspeech_model_en["text_tokenizer"],
|
287 |
+
ssrspeech_model_en["audio_tokenizer"],
|
288 |
+
audio_path, orig_transcript, target_transcript, mask_interval,
|
289 |
+
cfg_coef, aug_text, False, True, False,
|
290 |
+
device, decode_config
|
291 |
+
)
|
292 |
+
audio_tensors = []
|
293 |
+
# save segments for comparison
|
294 |
+
new_audio = new_audio[0].cpu()
|
295 |
+
torchaudio.save(audio_path, new_audio, codec_audio_sr)
|
296 |
+
|
297 |
+
audio_tensors.append(new_audio)
|
298 |
+
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
|
299 |
+
|
300 |
+
success_message = "<span style='color:green;'>Success: Inference successfully!</span>"
|
301 |
+
return output_audio, success_message
|
302 |
+
|
303 |
+
|
304 |
+
@spaces.GPU
|
305 |
+
def run_tts_en(seed, sub_amount, aug_text, cfg_coef, prompt_length,
|
306 |
+
audio_path, original_transcript, transcript):
|
307 |
+
|
308 |
+
codec_audio_sr = 16000
|
309 |
+
codec_sr = 50
|
310 |
+
top_k = 0
|
311 |
+
top_p = 0.8
|
312 |
+
temperature = 1
|
313 |
+
kvcache = 1
|
314 |
+
stop_repetition = 2
|
315 |
+
|
316 |
+
aug_text = True if aug_text == 1 else False
|
317 |
+
seed_everything(seed)
|
318 |
+
|
319 |
+
# resample audio
|
320 |
+
audio, _ = librosa.load(audio_path, sr=16000)
|
321 |
+
sf.write(audio_path, audio, 16000)
|
322 |
+
|
323 |
+
# text normalization
|
324 |
+
target_transcript = replace_numbers_with_words(transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
325 |
+
orig_transcript = replace_numbers_with_words(original_transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
326 |
+
|
327 |
+
[orig_transcript, segments, _, _] = transcribe_en(audio_path)
|
328 |
+
orig_transcript = orig_transcript.lower()
|
329 |
+
target_transcript = target_transcript.lower()
|
330 |
+
transcribe_state,_ = align_en(segments, audio_path)
|
331 |
+
print(orig_transcript)
|
332 |
+
print(target_transcript)
|
333 |
+
|
334 |
+
|
335 |
+
info = torchaudio.info(audio_path)
|
336 |
+
duration = info.num_frames / info.sample_rate
|
337 |
+
cut_length = duration
|
338 |
+
# Cut long audio for tts
|
339 |
+
if duration > prompt_length:
|
340 |
+
seg_num = len(transcribe_state['segments'])
|
341 |
+
for i in range(seg_num):
|
342 |
+
words = transcribe_state['segments'][i]['words']
|
343 |
+
for item in words:
|
344 |
+
if item['end'] >= prompt_length:
|
345 |
+
cut_length = min(item['end'], cut_length)
|
346 |
+
|
347 |
+
audio, _ = librosa.load(audio_path, sr=16000, duration=cut_length)
|
348 |
+
sf.write(audio_path, audio, 16000)
|
349 |
+
[orig_transcript, segments, _, _] = transcribe_en(audio_path)
|
350 |
+
|
351 |
+
|
352 |
+
orig_transcript = orig_transcript.lower()
|
353 |
+
target_transcript = target_transcript.lower()
|
354 |
+
transcribe_state,_ = align_en(segments, audio_path)
|
355 |
+
print(orig_transcript)
|
356 |
+
target_transcript_copy = target_transcript # for tts cut out
|
357 |
+
target_transcript_copy = target_transcript_copy.split(' ')[0]
|
358 |
+
target_transcript = orig_transcript + ' ' + target_transcript
|
359 |
+
print(target_transcript)
|
360 |
+
|
361 |
+
|
362 |
+
info = torchaudio.info(audio_path)
|
363 |
+
audio_dur = info.num_frames / info.sample_rate
|
364 |
+
|
365 |
+
morphed_span = [(audio_dur, audio_dur)] # in seconds
|
366 |
+
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
|
367 |
+
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
|
368 |
+
print("mask_interval: ", mask_interval)
|
369 |
+
|
370 |
+
decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
|
371 |
+
|
372 |
+
new_audio = inference_one_sample(
|
373 |
+
ssrspeech_model_en["model"],
|
374 |
+
ssrspeech_model_en["config"],
|
375 |
+
ssrspeech_model_en["phn2num"],
|
376 |
+
ssrspeech_model_en["text_tokenizer"],
|
377 |
+
ssrspeech_model_en["audio_tokenizer"],
|
378 |
+
audio_path, orig_transcript, target_transcript, mask_interval,
|
379 |
+
cfg_coef, aug_text, False, True, True,
|
380 |
+
device, decode_config
|
381 |
+
)
|
382 |
+
audio_tensors = []
|
383 |
+
# save segments for comparison
|
384 |
+
new_audio = new_audio[0].cpu()
|
385 |
+
torchaudio.save(audio_path, new_audio, codec_audio_sr)
|
386 |
+
|
387 |
+
[new_transcript, new_segments, _, _] = transcribe_en(audio_path)
|
388 |
+
transcribe_state,_ = align_en(new_segments, audio_path)
|
389 |
+
tmp1 = transcribe_state['segments'][0]['words'][0]['word'].lower()
|
390 |
+
tmp2 = target_transcript_copy.lower()
|
391 |
+
if tmp1 == tmp2:
|
392 |
+
offset = transcribe_state['segments'][0]['words'][0]['start']
|
393 |
else:
|
394 |
+
offset = transcribe_state['segments'][0]['words'][1]['start']
|
395 |
+
|
396 |
+
new_audio, _ = torchaudio.load(audio_path, frame_offset=int(offset*codec_audio_sr))
|
397 |
+
audio_tensors.append(new_audio)
|
398 |
+
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
|
399 |
+
|
400 |
+
success_message = "<span style='color:green;'>Success: Inference successfully!</span>"
|
401 |
+
return output_audio, success_message
|
402 |
+
|
403 |
+
|
404 |
+
@spaces.GPU
|
405 |
+
def run_edit_zh(seed, sub_amount, aug_text, cfg_coef, prompt_length,
|
406 |
+
audio_path, original_transcript, transcript):
|
407 |
+
|
408 |
+
codec_audio_sr = 16000
|
409 |
+
codec_sr = 50
|
410 |
+
top_k = 0
|
411 |
+
top_p = 0.8
|
412 |
+
temperature = 1
|
413 |
+
kvcache = 1
|
414 |
+
stop_repetition = 2
|
415 |
+
|
416 |
+
aug_text = True if aug_text == 1 else False
|
417 |
+
|
418 |
+
seed_everything(seed)
|
419 |
+
|
420 |
+
# resample audio
|
421 |
+
audio, _ = librosa.load(audio_path, sr=16000)
|
422 |
+
sf.write(audio_path, audio, 16000)
|
423 |
+
|
424 |
+
# text normalization
|
425 |
+
target_transcript = replace_numbers_with_words(transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
426 |
+
orig_transcript = replace_numbers_with_words(original_transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
427 |
+
|
428 |
+
[orig_transcript, segments, _] = transcribe_zh(audio_path)
|
429 |
+
|
430 |
+
converter = opencc.OpenCC('t2s')
|
431 |
+
orig_transcript = converter.convert(orig_transcript)
|
432 |
+
transcribe_state = align_zh(traditional_to_simplified(segments), audio_path)
|
433 |
+
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
|
434 |
+
|
435 |
+
print(orig_transcript)
|
436 |
+
print(target_transcript)
|
437 |
+
|
438 |
+
operations, orig_spans = parse_edit_zh(orig_transcript, target_transcript)
|
439 |
+
print(operations)
|
440 |
+
print("orig_spans: ", orig_spans)
|
441 |
+
|
442 |
+
if len(orig_spans) > 3:
|
443 |
+
raise gr.Error("Current model only supports maximum 3 editings")
|
444 |
|
445 |
+
starting_intervals = []
|
446 |
+
ending_intervals = []
|
447 |
+
for orig_span in orig_spans:
|
448 |
+
start, end = get_mask_interval(transcribe_state, orig_span)
|
449 |
+
starting_intervals.append(start)
|
450 |
+
ending_intervals.append(end)
|
451 |
+
|
452 |
+
print("intervals: ", starting_intervals, ending_intervals)
|
453 |
|
454 |
+
info = torchaudio.info(audio_path)
|
455 |
+
audio_dur = info.num_frames / info.sample_rate
|
456 |
+
|
457 |
+
def combine_spans(spans, threshold=0.2):
|
458 |
+
spans.sort(key=lambda x: x[0])
|
459 |
+
combined_spans = []
|
460 |
+
current_span = spans[0]
|
461 |
+
|
462 |
+
for i in range(1, len(spans)):
|
463 |
+
next_span = spans[i]
|
464 |
+
if current_span[1] >= next_span[0] - threshold:
|
465 |
+
current_span[1] = max(current_span[1], next_span[1])
|
466 |
+
else:
|
467 |
+
combined_spans.append(current_span)
|
468 |
+
current_span = next_span
|
469 |
+
combined_spans.append(current_span)
|
470 |
+
return combined_spans
|
471 |
+
|
472 |
+
morphed_span = [[max(start - sub_amount, 0), min(end + sub_amount, audio_dur)]
|
473 |
+
for start, end in zip(starting_intervals, ending_intervals)] # in seconds
|
474 |
+
morphed_span = combine_spans(morphed_span, threshold=0.2)
|
475 |
+
print("morphed_spans: ", morphed_span)
|
476 |
+
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
|
477 |
+
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
|
478 |
+
|
479 |
decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
|
480 |
|
|
|
481 |
new_audio = inference_one_sample(
|
482 |
+
ssrspeech_model_zh["model"],
|
483 |
+
ssrspeech_model_zh["config"],
|
484 |
+
ssrspeech_model_zh["phn2num"],
|
485 |
+
ssrspeech_model_zh["text_tokenizer"],
|
486 |
+
ssrspeech_model_zh["audio_tokenizer"],
|
487 |
audio_path, orig_transcript, target_transcript, mask_interval,
|
488 |
+
cfg_coef, aug_text, False, True, False,
|
489 |
device, decode_config
|
490 |
)
|
491 |
audio_tensors = []
|
492 |
# save segments for comparison
|
493 |
new_audio = new_audio[0].cpu()
|
494 |
torchaudio.save(audio_path, new_audio, codec_audio_sr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
audio_tensors.append(new_audio)
|
496 |
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
|
497 |
|
|
|
499 |
return output_audio, success_message
|
500 |
|
501 |
|
502 |
+
@spaces.GPU
|
503 |
+
def run_tts_zh(seed, sub_amount, aug_text, cfg_coef, prompt_length,
|
504 |
+
audio_path, original_transcript, transcript):
|
505 |
+
|
506 |
+
codec_audio_sr = 16000
|
507 |
+
codec_sr = 50
|
508 |
+
top_k = 0
|
509 |
+
top_p = 0.8
|
510 |
+
temperature = 1
|
511 |
+
kvcache = 1
|
512 |
+
stop_repetition = 2
|
513 |
+
|
514 |
+
aug_text = True if aug_text == 1 else False
|
515 |
+
|
516 |
+
seed_everything(seed)
|
517 |
|
518 |
+
# resample audio
|
519 |
+
audio, _ = librosa.load(audio_path, sr=16000)
|
520 |
+
sf.write(audio_path, audio, 16000)
|
521 |
+
|
522 |
+
# text normalization
|
523 |
+
target_transcript = replace_numbers_with_words(transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
524 |
+
orig_transcript = replace_numbers_with_words(original_transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
|
|
525 |
|
526 |
+
[orig_transcript, segments, _] = transcribe_zh(audio_path)
|
527 |
|
528 |
+
converter = opencc.OpenCC('t2s')
|
529 |
+
orig_transcript = converter.convert(orig_transcript)
|
530 |
+
transcribe_state = align_zh(traditional_to_simplified(segments), audio_path)
|
531 |
+
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
|
532 |
+
|
533 |
+
print(orig_transcript)
|
534 |
+
print(target_transcript)
|
535 |
+
|
536 |
+
info = torchaudio.info(audio_path)
|
537 |
+
duration = info.num_frames / info.sample_rate
|
538 |
+
cut_length = duration
|
539 |
+
# Cut long audio for tts
|
540 |
+
if duration > prompt_length:
|
541 |
+
seg_num = len(transcribe_state['segments'])
|
542 |
+
for i in range(seg_num):
|
543 |
+
words = transcribe_state['segments'][i]['words']
|
544 |
+
for item in words:
|
545 |
+
if item['end'] >= prompt_length:
|
546 |
+
cut_length = min(item['end'], cut_length)
|
547 |
+
|
548 |
+
audio, _ = librosa.load(audio_path, sr=16000, duration=cut_length)
|
549 |
+
sf.write(audio_path, audio, 16000)
|
550 |
+
[orig_transcript, segments, _] = transcribe_zh(audio_path)
|
551 |
+
|
552 |
+
|
553 |
+
converter = opencc.OpenCC('t2s')
|
554 |
+
orig_transcript = converter.convert(orig_transcript)
|
555 |
+
transcribe_state = align_zh(traditional_to_simplified(segments), audio_path)
|
556 |
+
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
|
557 |
+
|
558 |
+
print(orig_transcript)
|
559 |
+
target_transcript_copy = target_transcript # for tts cut out
|
560 |
+
target_transcript_copy = target_transcript_copy[0]
|
561 |
+
target_transcript = orig_transcript + target_transcript
|
562 |
+
print(target_transcript)
|
563 |
+
|
564 |
+
|
565 |
+
info = torchaudio.info(audio_path)
|
566 |
+
audio_dur = info.num_frames / info.sample_rate
|
567 |
+
|
568 |
+
morphed_span = [(audio_dur, audio_dur)] # in seconds
|
569 |
+
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
|
570 |
+
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
|
571 |
+
print("mask_interval: ", mask_interval)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
572 |
|
573 |
+
decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
|
574 |
+
|
575 |
+
new_audio = inference_one_sample(
|
576 |
+
ssrspeech_model_zh["model"],
|
577 |
+
ssrspeech_model_zh["config"],
|
578 |
+
ssrspeech_model_zh["phn2num"],
|
579 |
+
ssrspeech_model_zh["text_tokenizer"],
|
580 |
+
ssrspeech_model_zh["audio_tokenizer"],
|
581 |
+
audio_path, orig_transcript, target_transcript, mask_interval,
|
582 |
+
cfg_coef, aug_text, False, True, True,
|
583 |
+
device, decode_config
|
584 |
+
)
|
585 |
+
audio_tensors = []
|
586 |
+
# save segments for comparison
|
587 |
+
new_audio = new_audio[0].cpu()
|
588 |
+
torchaudio.save(audio_path, new_audio, codec_audio_sr)
|
589 |
+
|
590 |
+
[new_transcript, new_segments, _] = transcribe_zh(audio_path)
|
591 |
+
|
592 |
+
transcribe_state = align_zh(traditional_to_simplified(new_segments), audio_path)
|
593 |
+
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
|
594 |
+
tmp1 = transcribe_state['segments'][0]['words'][0]['word']
|
595 |
+
tmp2 = target_transcript_copy
|
596 |
+
|
597 |
+
if tmp1 == tmp2:
|
598 |
+
offset = transcribe_state['segments'][0]['words'][0]['start']
|
599 |
+
else:
|
600 |
+
offset = transcribe_state['segments'][0]['words'][1]['start']
|
601 |
+
|
602 |
+
new_audio, _ = torchaudio.load(audio_path, frame_offset=int(offset*codec_audio_sr))
|
603 |
+
audio_tensors.append(new_audio)
|
604 |
+
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
|
605 |
+
|
606 |
+
success_message = "<span style='color:green;'>Success: Inference successfully!</span>"
|
607 |
+
return output_audio, success_message
|
608 |
|
609 |
|
610 |
if __name__ == "__main__":
|
|
|
624 |
TMP_PATH = args.tmp_path
|
625 |
MODELS_PATH = args.models_path
|
626 |
|
627 |
+
# app = get_app()
|
628 |
+
# app.queue().launch(share=args.share, server_port=args.port)
|
629 |
+
|
630 |
+
# CSS styling (optional)
|
631 |
+
css = """
|
632 |
+
#col-container {
|
633 |
+
margin: 0 auto;
|
634 |
+
max-width: 1280px;
|
635 |
+
}
|
636 |
+
"""
|
637 |
+
|
638 |
+
# Gradio Blocks layout
|
639 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
640 |
+
with gr.Column(elem_id="col-container"):
|
641 |
+
gr.Markdown("""
|
642 |
+
# SSR-Speech: High-quality Speech Editor and Text-to-Speech Synthesizer
|
643 |
+
Generate and edit speech from text. Adjust advanced settings for more control.
|
644 |
+
|
645 |
+
Learn more about 🚀**SSR-Speech** on the [SSR-Speech Homepage](https://wanghelin1997.github.io/SSR-Speech-Demo/).
|
646 |
+
""")
|
647 |
+
|
648 |
+
|
649 |
+
# Tabs for Generate and Edit
|
650 |
+
with gr.Tab("English Speech Editing"):
|
651 |
+
|
652 |
+
with gr.Row():
|
653 |
+
with gr.Column(scale=2):
|
654 |
+
input_audio = gr.Audio(value=f"{DEMO_PATH}/84_121550_000074_000000.wav", label="Input Audio", type="filepath", interactive=True)
|
655 |
+
with gr.Group():
|
656 |
+
original_transcript = gr.Textbox(label="Original transcript", lines=5, value="Debug",
|
657 |
+
info="Use whisperx model to get the transcript.")
|
658 |
+
transcribe_btn = gr.Button(value="Transcribe")
|
659 |
+
|
660 |
+
with gr.Column(scale=3):
|
661 |
+
with gr.Group():
|
662 |
+
transcript = gr.Textbox(label="Text", lines=7, value="Debug", interactive=True)
|
663 |
+
run_btn = gr.Button(value="Run")
|
664 |
+
|
665 |
+
with gr.Column(scale=2):
|
666 |
+
output_audio = gr.Audio(label="Output Audio")
|
667 |
+
|
668 |
+
with gr.Row():
|
669 |
+
with gr.Accordion("Advanced Settings", open=False):
|
670 |
+
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
|
671 |
+
aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1,
|
672 |
+
info="set to 1 to use classifer-free guidance, change if you don't like the results")
|
673 |
+
cfg_coef = gr.Number(label="cfg_coef", value=1.5,
|
674 |
+
info="cfg guidance scale, 1.5 is a good value, change if you don't like the results")
|
675 |
+
prompt_length = gr.Number(label="prompt_length", value=3,
|
676 |
+
info="used for tts prompt, will automatically cut the prompt audio to this length")
|
677 |
+
sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment, change if you don't like the results")
|
678 |
+
|
679 |
+
success_output = gr.HTML()
|
680 |
+
|
681 |
+
semgents = gr.State() # not used
|
682 |
+
state = gr.State() # not used
|
683 |
+
transcribe_btn.click(fn=transcribe_en,
|
684 |
+
inputs=[input_audio],
|
685 |
+
outputs=[original_transcript, semgents, state, success_output])
|
686 |
+
|
687 |
+
run_btn.click(fn=run_edit_en,
|
688 |
+
inputs=[
|
689 |
+
seed, sub_amount,
|
690 |
+
aug_text, cfg_coef, prompt_length,
|
691 |
+
input_audio, original_transcript, transcript,
|
692 |
+
],
|
693 |
+
outputs=[output_audio, success_output])
|
694 |
+
|
695 |
+
transcript.submit(fn=run_edit_en,
|
696 |
+
inputs=[
|
697 |
+
seed, sub_amount,
|
698 |
+
aug_text, cfg_coef, prompt_length,
|
699 |
+
input_audio, original_transcript, transcript,
|
700 |
+
],
|
701 |
+
outputs=[output_audio, success_output]
|
702 |
+
)
|
703 |
+
|
704 |
+
with gr.Tab("English TTS"):
|
705 |
+
|
706 |
+
with gr.Row():
|
707 |
+
with gr.Column(scale=2):
|
708 |
+
input_audio = gr.Audio(value=f"{DEMO_PATH}/84_121550_000074_000000.wav", label="Input Audio", type="filepath", interactive=True)
|
709 |
+
with gr.Group():
|
710 |
+
original_transcript = gr.Textbox(label="Original transcript", lines=5, value="Debug",
|
711 |
+
info="Use whisperx model to get the transcript.")
|
712 |
+
transcribe_btn = gr.Button(value="Transcribe")
|
713 |
+
|
714 |
+
with gr.Column(scale=3):
|
715 |
+
with gr.Group():
|
716 |
+
transcript = gr.Textbox(label="Text", lines=7, value="Debug", interactive=True)
|
717 |
+
run_btn = gr.Button(value="Run")
|
718 |
+
|
719 |
+
with gr.Column(scale=2):
|
720 |
+
output_audio = gr.Audio(label="Output Audio")
|
721 |
+
|
722 |
+
with gr.Row():
|
723 |
+
with gr.Accordion("Advanced Settings", open=False):
|
724 |
+
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
|
725 |
+
aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1,
|
726 |
+
info="set to 1 to use classifer-free guidance, change if you don't like the results")
|
727 |
+
cfg_coef = gr.Number(label="cfg_coef", value=1.5,
|
728 |
+
info="cfg guidance scale, 1.5 is a good value, change if you don't like the results")
|
729 |
+
prompt_length = gr.Number(label="prompt_length", value=3,
|
730 |
+
info="used for tts prompt, will automatically cut the prompt audio to this length")
|
731 |
+
sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment, change if you don't like the results")
|
732 |
+
|
733 |
+
success_output = gr.HTML()
|
734 |
+
|
735 |
+
semgents = gr.State() # not used
|
736 |
+
state = gr.State() # not used
|
737 |
+
transcribe_btn.click(fn=transcribe_en,
|
738 |
+
inputs=[input_audio],
|
739 |
+
outputs=[original_transcript, semgents, state, success_output])
|
740 |
+
|
741 |
+
run_btn.click(fn=run_tts_en,
|
742 |
+
inputs=[
|
743 |
+
seed, sub_amount,
|
744 |
+
aug_text, cfg_coef, prompt_length,
|
745 |
+
input_audio, original_transcript, transcript,
|
746 |
+
],
|
747 |
+
outputs=[output_audio, success_output])
|
748 |
+
|
749 |
+
transcript.submit(fn=run_tts_en,
|
750 |
+
inputs=[
|
751 |
+
seed, sub_amount,
|
752 |
+
aug_text, cfg_coef, prompt_length,
|
753 |
+
input_audio, original_transcript, transcript,
|
754 |
+
],
|
755 |
+
outputs=[output_audio, success_output]
|
756 |
+
)
|
757 |
+
|
758 |
+
with gr.Tab("Mandarin Speech Editing"):
|
759 |
+
|
760 |
+
with gr.Row():
|
761 |
+
with gr.Column(scale=2):
|
762 |
+
input_audio = gr.Audio(value=f"{DEMO_PATH}/aishell3_test.wav", label="Input Audio", type="filepath", interactive=True)
|
763 |
+
with gr.Group():
|
764 |
+
original_transcript = gr.Textbox(label="Original transcript", lines=5, value="Debug",
|
765 |
+
info="Use whisperx model to get the transcript.")
|
766 |
+
transcribe_btn = gr.Button(value="Transcribe")
|
767 |
+
|
768 |
+
with gr.Column(scale=3):
|
769 |
+
with gr.Group():
|
770 |
+
transcript = gr.Textbox(label="Text", lines=7, value="Debug", interactive=True)
|
771 |
+
run_btn = gr.Button(value="Run")
|
772 |
+
|
773 |
+
with gr.Column(scale=2):
|
774 |
+
output_audio = gr.Audio(label="Output Audio")
|
775 |
+
|
776 |
+
with gr.Row():
|
777 |
+
with gr.Accordion("Advanced Settings", open=False):
|
778 |
+
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
|
779 |
+
aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1,
|
780 |
+
info="set to 1 to use classifer-free guidance, change if you don't like the results")
|
781 |
+
cfg_coef = gr.Number(label="cfg_coef", value=1.5,
|
782 |
+
info="cfg guidance scale, 1.5 is a good value, change if you don't like the results")
|
783 |
+
prompt_length = gr.Number(label="prompt_length", value=3,
|
784 |
+
info="used for tts prompt, will automatically cut the prompt audio to this length")
|
785 |
+
sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment, change if you don't like the results")
|
786 |
+
|
787 |
+
success_output = gr.HTML()
|
788 |
+
|
789 |
+
semgents = gr.State() # not used
|
790 |
+
state = gr.State() # not used
|
791 |
+
transcribe_btn.click(fn=transcribe_zh,
|
792 |
+
inputs=[input_audio],
|
793 |
+
outputs=[original_transcript, semgents, state, success_output])
|
794 |
+
|
795 |
+
run_btn.click(fn=run_edit_zh,
|
796 |
+
inputs=[
|
797 |
+
seed, sub_amount,
|
798 |
+
aug_text, cfg_coef, prompt_length,
|
799 |
+
input_audio, original_transcript, transcript,
|
800 |
+
],
|
801 |
+
outputs=[output_audio, success_output])
|
802 |
+
|
803 |
+
transcript.submit(fn=run_edit_zh,
|
804 |
+
inputs=[
|
805 |
+
seed, sub_amount,
|
806 |
+
aug_text, cfg_coef, prompt_length,
|
807 |
+
input_audio, original_transcript, transcript,
|
808 |
+
],
|
809 |
+
outputs=[output_audio, success_output]
|
810 |
+
)
|
811 |
+
|
812 |
+
with gr.Tab("Mandarin TTS"):
|
813 |
+
|
814 |
+
with gr.Row():
|
815 |
+
with gr.Column(scale=2):
|
816 |
+
input_audio = gr.Audio(value=f"{DEMO_PATH}/aishell3_test.wav", label="Input Audio", type="filepath", interactive=True)
|
817 |
+
with gr.Group():
|
818 |
+
original_transcript = gr.Textbox(label="Original transcript", lines=5, value="Debug",
|
819 |
+
info="Use whisperx model to get the transcript.")
|
820 |
+
transcribe_btn = gr.Button(value="Transcribe")
|
821 |
+
|
822 |
+
with gr.Column(scale=3):
|
823 |
+
with gr.Group():
|
824 |
+
transcript = gr.Textbox(label="Text", lines=7, value="Debug", interactive=True)
|
825 |
+
run_btn = gr.Button(value="Run")
|
826 |
+
|
827 |
+
with gr.Column(scale=2):
|
828 |
+
output_audio = gr.Audio(label="Output Audio")
|
829 |
+
|
830 |
+
with gr.Row():
|
831 |
+
with gr.Accordion("Advanced Settings", open=False):
|
832 |
+
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
|
833 |
+
aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1,
|
834 |
+
info="set to 1 to use classifer-free guidance, change if you don't like the results")
|
835 |
+
cfg_coef = gr.Number(label="cfg_coef", value=1.5,
|
836 |
+
info="cfg guidance scale, 1.5 is a good value, change if you don't like the results")
|
837 |
+
prompt_length = gr.Number(label="prompt_length", value=3,
|
838 |
+
info="used for tts prompt, will automatically cut the prompt audio to this length")
|
839 |
+
sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment, change if you don't like the results")
|
840 |
+
|
841 |
+
success_output = gr.HTML()
|
842 |
+
|
843 |
+
semgents = gr.State() # not used
|
844 |
+
state = gr.State() # not used
|
845 |
+
transcribe_btn.click(fn=transcribe_zh,
|
846 |
+
inputs=[input_audio],
|
847 |
+
outputs=[original_transcript, semgents, state, success_output])
|
848 |
+
|
849 |
+
run_btn.click(fn=run_tts_zh,
|
850 |
+
inputs=[
|
851 |
+
seed, sub_amount,
|
852 |
+
aug_text, cfg_coef, prompt_length,
|
853 |
+
input_audio, original_transcript, transcript,
|
854 |
+
],
|
855 |
+
outputs=[output_audio, success_output])
|
856 |
+
|
857 |
+
transcript.submit(fn=run_tts_zh,
|
858 |
+
inputs=[
|
859 |
+
seed, sub_amount,
|
860 |
+
aug_text, cfg_coef, prompt_length,
|
861 |
+
input_audio, original_transcript, transcript,
|
862 |
+
],
|
863 |
+
outputs=[output_audio, success_output]
|
864 |
+
)
|
865 |
+
|
866 |
+
# Launch the Gradio demo
|
867 |
+
demo.launch()
|