export / app.py
echarlaix's picture
echarlaix HF staff
set pipeline tag in model card
b2aa4ee
import os
import shutil
import torch
import gradio as gr
from huggingface_hub import HfApi, whoami, ModelCard, model_info
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from textwrap import dedent
from pathlib import Path
from tempfile import TemporaryDirectory
from huggingface_hub.file_download import repo_folder_name
from optimum.intel.utils.constant import _TASK_ALIASES
from optimum.exporters import TasksManager
from optimum.intel.utils.modeling_utils import _find_files_matching_pattern
from optimum.intel import (
OVModelForAudioClassification,
OVModelForCausalLM,
OVModelForFeatureExtraction,
OVModelForImageClassification,
OVModelForMaskedLM,
OVModelForQuestionAnswering,
OVModelForSeq2SeqLM,
OVModelForSequenceClassification,
OVModelForTokenClassification,
OVModelForPix2Struct,
OVWeightQuantizationConfig,
OVDiffusionPipeline,
)
from diffusers import ConfigMixin
_HEAD_TO_AUTOMODELS = {
"feature-extraction": "OVModelForFeatureExtraction",
"fill-mask": "OVModelForMaskedLM",
"text-generation": "OVModelForCausalLM",
"text-classification": "OVModelForSequenceClassification",
"token-classification": "OVModelForTokenClassification",
"question-answering": "OVModelForQuestionAnswering",
"image-classification": "OVModelForImageClassification",
"audio-classification": "OVModelForAudioClassification",
}
def export(model_id: str, private_repo: bool, overwritte: bool, oauth_token: gr.OAuthToken):
if oauth_token.token is None:
return "You must be logged in to use this space"
if not model_id:
return f"### Invalid input 🐞 Please specify a model name, got {model_id}"
try:
model_name = model_id.split("/")[-1]
username = whoami(oauth_token.token)["name"]
new_repo_id = f"{username}/{model_name}-openvino"
library_name = TasksManager.infer_library_from_model(model_id, token=oauth_token.token)
if library_name == "diffusers":
auto_model_class = "OVDiffusionPipeline"
elif library_name == "transformers":
task = TasksManager.infer_task_from_model(model_id, token=oauth_token.token)
if task == "text2text-generation":
return "Export of Seq2Seq models is currently disabled"
if task not in _HEAD_TO_AUTOMODELS:
return f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported"
auto_model_class = _HEAD_TO_AUTOMODELS[task]
else:
# TODO: add sentence-transformers and timm support in space
return f"Library {library_name} not yet supported"
ov_files = _find_files_matching_pattern(
model_id,
pattern=r"(.*)?openvino(.*)?\_model(.*)?.xml$",
use_auth_token=oauth_token.token,
)
if len(ov_files) > 0:
return f"Model {model_id} is already converted, skipping.."
api = HfApi(token=oauth_token.token)
if api.repo_exists(new_repo_id) and not overwritte:
return f"Model {new_repo_id} already exist, please tick the overwritte box to push on an existing repository"
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder)
try:
api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"])
ov_model = eval(auto_model_class).from_pretrained(model_id, export=True, cache_dir=folder, token=oauth_token.token)
ov_model.save_pretrained(folder)
new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo)
new_repo_id = new_repo_url.repo_id
print("Repository created successfully!", new_repo_url)
folder = Path(folder)
for dir_name in (
"",
"vae_encoder",
"vae_decoder",
"text_encoder",
"text_encoder_2",
"unet",
"tokenizer",
"tokenizer_2",
"scheduler",
"feature_extractor",
):
if not (folder / dir_name).is_dir():
continue
for file_path in (folder / dir_name).iterdir():
if file_path.is_file():
try:
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=os.path.join(dir_name, file_path.name),
repo_id=new_repo_id,
)
except Exception as e:
return f"Error uploading file {file_path}: {e}"
try:
card = ModelCard.load(model_id, token=oauth_token.token)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
card.data.tags.append("openvino")
card.data.tags.append("openvino-export")
card.data.base_model = model_id
pipeline_tag = getattr(model_info(model_id, token=oauth_token.token), "pipeline_tag", None)
if pipeline_tag is not None:
card.data.pipeline_tag = pipeline_tag
card.text = dedent(
f"""
This model was converted to OpenVINO from [`{model_id}`](https://huggingface.co/{model_id}) using [optimum-intel](https://github.com/huggingface/optimum-intel)
via the [export](https://huggingface.co/spaces/echarlaix/openvino-export) space.
First make sure you have optimum-intel installed:
```bash
pip install optimum[openvino]
```
To load your model you can do as follows:
```python
from optimum.intel import {auto_model_class}
model_id = "{new_repo_id}"
model = {auto_model_class}.from_pretrained(model_id)
```
"""
)
card_path = os.path.join(folder, "README.md")
card.save(card_path)
api.upload_file(
path_or_fileobj=card_path,
path_in_repo="README.md",
repo_id=new_repo_id,
)
return f"This model was successfully exported, find it under your repository {new_repo_url}"
finally:
shutil.rmtree(folder, ignore_errors=True)
except Exception as e:
return f"### Error: {e}"
DESCRIPTION = """
This Space uses [Optimum Intel](https://huggingface.co/docs/optimum/main/en/intel/openvino/export) to automatically export a model from the Hub to the [OpenVINO IR format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html).
After conversion, a repository will be pushed under your namespace with the resulting model.
The list of supported architectures can be found in the [documentation](https://huggingface.co/docs/optimum/main/en/intel/openvino/models).
"""
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model ID on the hub",
search_type="model",
)
private_repo = gr.Checkbox(
value=False,
label="Private repository",
info="Create a private repository instead of a public one",
)
overwritte = gr.Checkbox(
value=False,
label="Overwrite repository content",
info="Enable pushing files on existing repositories, potentially overwriting existing files",
)
interface = gr.Interface(
fn=export,
inputs=[
model_id,
private_repo,
overwritte,
],
outputs=[
gr.Markdown(label="output"),
],
title="Export your model to OpenVINO",
description=DESCRIPTION,
api_name=False,
)
with gr.Blocks() as demo:
gr.Markdown("You must be logged in to use this space")
gr.LoginButton(min_width=250)
interface.render()
demo.launch()