Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import time
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import plotly.express as px
|
6 |
+
from plotly.subplots import make_subplots
|
7 |
+
import plotly.graph_objects as go
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
|
10 |
+
!pip install -U sentence-transformers
|
11 |
+
|
12 |
+
from sentence_transformers import SentenceTransformer, util
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
|
16 |
+
# Load document embeddings
|
17 |
+
doc_emb = np.loadtxt("abstract-embed.txt", dtype=float)
|
18 |
+
doc_emb
|
19 |
+
|
20 |
+
# Load data
|
21 |
+
df = pd.read_csv("sessions.csv", usecols=['Unique ID', 'Name', 'Description', 'Activity Code', 'Start Time', 'End Time', 'Location Name'])
|
22 |
+
df.head()
|
23 |
+
|
24 |
+
# Get attributes from dataframe
|
25 |
+
docs = list(df["Description"])
|
26 |
+
titles = list(df["Name"])
|
27 |
+
start_times = list(df["Start Time"])
|
28 |
+
end_times = list(df["End Time"])
|
29 |
+
locations = list(df["Location Name"])
|
30 |
+
|
31 |
+
|
32 |
+
# Query
|
33 |
+
query = input("Enter your query: ")
|
34 |
+
|
35 |
+
#Encode query and documents
|
36 |
+
query_emb = model.encode(query).astype(float)
|
37 |
+
|
38 |
+
#Compute dot score between query and all document embeddings
|
39 |
+
scores = util.dot_score(query_emb, doc_emb.astype(float))[0].cpu().tolist()
|
40 |
+
|
41 |
+
#Combine docs & scores with other attributes
|
42 |
+
doc_score_pairs = list(zip(docs, scores, titles, start_times, end_times, locations))
|
43 |
+
|
44 |
+
# top_k results to return
|
45 |
+
top_k=3
|
46 |
+
print(" Your top", top_k, "most similar sessions in the Summit:")
|
47 |
+
|
48 |
+
#Sort by decreasing score
|
49 |
+
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
|
50 |
+
|
51 |
+
|
52 |
+
#Output presentation recommendations
|
53 |
+
for doc, score, title, start_time, end_time, location in doc_score_pairs[:top_k]:
|
54 |
+
|
55 |
+
print("Score: %f" %score)
|
56 |
+
print("Title: %s" %title)
|
57 |
+
print("Abstract: %s" %doc)
|
58 |
+
print("Location: %s" %location)
|
59 |
+
f"From {start_time} to {end_time}"
|
60 |
+
print('\n')
|
61 |
+
|
62 |
+
|