File size: 13,610 Bytes
d54dcc8
 
 
42ef8b6
d54dcc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e91478
d54dcc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aa7102
 
d54dcc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de5d4b1
d54dcc8
 
 
 
0aa7102
d54dcc8
 
 
 
de5d4b1
d54dcc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d0ac1c
acd3439
d54dcc8
2278636
0aa7102
 
d54dcc8
 
 
 
 
acd3439
d54dcc8
 
 
 
 
 
 
 
acd3439
d54dcc8
 
 
 
 
c6e7168
d54dcc8
 
 
 
 
 
7a2beef
d54dcc8
0aa7102
 
 
 
 
 
 
 
 
 
 
 
 
d54dcc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2278636
d54dcc8
 
 
 
 
 
 
0d26b1d
 
9ef5340
dca04a7
0d26b1d
 
 
9ef5340
8996779
0d26b1d
c65d4d6
0d26b1d
 
9ef5340
8996779
0d26b1d
d54dcc8
 
 
 
 
 
 
 
 
 
 
18b7cae
 
 
 
 
d54dcc8
 
 
 
86735c0
d54dcc8
 
18b7cae
 
 
 
 
 
 
d54dcc8
42ef8b6
d54dcc8
 
0d26b1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42ef8b6
0d26b1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import os
import zipfile

import gradio as gr
import nltk
import pandas as pd
import requests

from pyabsa import TADCheckpointManager
from textattack.attack_recipes import (
    BAEGarg2019,
    PWWSRen2019,
    TextFoolerJin2019,
    PSOZang2020,
    IGAWang2019,
    GeneticAlgorithmAlzantot2018,
    DeepWordBugGao2018,
    CLARE2020,
)
from textattack.attack_results import SuccessfulAttackResult
from utils import SentAttacker, get_agnews_example, get_sst2_example, get_amazon_example, get_imdb_example, diff_texts
# from utils import get_yahoo_example

sent_attackers = {}
tad_classifiers = {}

attack_recipes = {
    "bae": BAEGarg2019,
    "pwws": PWWSRen2019,
    "textfooler": TextFoolerJin2019,
    "pso": PSOZang2020,
    "iga": IGAWang2019,
    "ga": GeneticAlgorithmAlzantot2018,
    "deepwordbug": DeepWordBugGao2018,
    "clare": CLARE2020,
}


def init():
    nltk.download("omw-1.4")

    if not os.path.exists("TAD-SST2"):
        z = zipfile.ZipFile("checkpoints.zip", "r")
        z.extractall(os.getcwd())

    for attacker in ["pwws", "bae", "textfooler", "deepwordbug"]:
        for dataset in [
            "agnews10k",
            "sst2",
            "MR",
            'imdb'
        ]:
            if "tad-{}".format(dataset) not in tad_classifiers:
                tad_classifiers[
                    "tad-{}".format(dataset)
                ] = TADCheckpointManager.get_tad_text_classifier(
                    "tad-{}".format(dataset).upper()
                )

            sent_attackers["tad-{}{}".format(dataset, attacker)] = SentAttacker(
                tad_classifiers["tad-{}".format(dataset)], attack_recipes[attacker]
            )
            tad_classifiers["tad-{}".format(dataset)].sent_attacker = sent_attackers[
                "tad-{}pwws".format(dataset)
            ]


cache = set()


def generate_adversarial_example(dataset, attacker, text=None, label=None):
    """if not text or text in cache:
        if "agnews" in dataset.lower():
            text, label = get_agnews_example()
        elif "sst2" in dataset.lower():
            text, label = get_sst2_example()
        elif "MR" in dataset.lower():
            text, label = get_amazon_example()
        # elif "yahoo" in dataset.lower():
            # text, label = get_yahoo_example()
        elif "imdb" in dataset.lower():
            text, label = get_imdb_example()"""

    cache.add(text)

    result = None
    attack_result = sent_attackers[
        "tad-{}{}".format(dataset.lower(), attacker.lower())
    ].attacker.simple_attack(text, int(label))
    if isinstance(attack_result, SuccessfulAttackResult):
        if (
                attack_result.perturbed_result.output
                != attack_result.original_result.ground_truth_output
        ) and (
                attack_result.original_result.output
                == attack_result.original_result.ground_truth_output
        ):
            # with defense
            result = tad_classifiers["tad-{}".format(dataset.lower())].infer(
                attack_result.perturbed_result.attacked_text.text
                + "$LABEL${},{},{}".format(
                    attack_result.original_result.ground_truth_output,
                    1,
                    attack_result.perturbed_result.output,
                ),
                print_result=True,
                defense=attacker,
            )

    if result:
        classification_df = {}
        classification_df["is_repaired"] = result["is_fixed"]
        classification_df["pred_label"] = result["label"]
        classification_df["confidence"] = round(result["confidence"], 3)
        classification_df["is_correct"] = str(result["pred_label"]) == str(label)

        advdetection_df = {}
        if result["is_adv_label"] != "0":
            advdetection_df["is_adversarial"] = {
                "0": False,
                "1": True,
                0: False,
                1: True,
            }[result["is_adv_label"]]
            advdetection_df["perturbed_label"] = result["perturbed_label"]
            advdetection_df["confidence"] = round(result["is_adv_confidence"], 3)
            advdetection_df['ref_is_attack'] = result['ref_is_adv_label']
            advdetection_df['is_correct'] = result['ref_is_adv_check']

    else:
        return generate_adversarial_example(dataset, attacker)

    return (
        text,
        label,
        result["restored_text"],
        result["label"],
        attack_result.perturbed_result.attacked_text.text,
        diff_texts(text, text),
        diff_texts(text, attack_result.perturbed_result.attacked_text.text),
        diff_texts(text, result["restored_text"]),
        attack_result.perturbed_result.output,
        pd.DataFrame(classification_df, index=[0]),
        pd.DataFrame(advdetection_df, index=[0]),
    )


def run_demo(dataset, attacker, text=None, label=None):
    try:
        data = {
            "dataset": dataset,
            "attacker": attacker,
            "text": text,
            "label": label,
        }
        response = requests.post('https://rpddemo.pagekite.me/api/generate_adversarial_example', json=data)
        result = response.json()
        print(response.json())
        return (
            result["text"],
            result["label"],
            result["restored_text"],
            result["result_label"],
            result["perturbed_text"],
            result["text_diff"],
            result["perturbed_diff"],
            result["restored_diff"],
            result["output"],
            pd.DataFrame(result["classification_df"]),
            pd.DataFrame(result["advdetection_df"]),
            result["message"]
        )
    except Exception as e:
        print(e)
        return generate_adversarial_example(dataset, attacker, text, label)


def check_gpu():
    try:
        response = requests.post('https://rpddemo.pagekite.me/api/generate_adversarial_example', timeout=3)
        if response.status_code < 500:
            return 'GPU available'
        else:
            return 'GPU not available'
    except Exception as e:
        return 'GPU not available'


if __name__ == "__main__":
    try:
        init()
    except Exception as e:
        print(e)
        print("Failed to initialize the demo. Please try again later.")

    demo = gr.Blocks()

    with demo:
        gr.Markdown("<h1 align='center'>Detection and Correction based on Word Importance Ranking (DCWIR) </h1>")
        gr.Markdown("<h2 align='center'>Clarifications</h2>")
        gr.Markdown("""
    - This demo has no mechanism to ensure the adversarial example will be correctly repaired by DCWIR. 
    - The adversarial example and corrected adversarial example may be unnatural to read, while it is because the attackers usually generate unnatural perturbations. 
    - All the proposed attacks are Black Box attack where the attacker has no access to the model parameters.
    """)
        gr.Markdown("<h2 align='center'>Natural Example Input</h2>")
        with gr.Group():
            with gr.Row():
                input_dataset = gr.Radio(
                    choices=["SST2", "IMDB", "MR", "AGNews10K"],
                    value="SST2",
                    label="Select a testing dataset and an adversarial attacker to generate an adversarial example.",
                )
                input_attacker = gr.Radio(
                    choices=["BAE", "PWWS", "TextFooler", "DeepWordBug"],
                    value="TextFooler",
                    label="Choose an Adversarial Attacker for generating an adversarial example to attack the model.",
                )
            with gr.Group(visible=True):

                with gr.Row():
                    input_sentence = gr.Textbox(
                        placeholder="Input a natural example...",
                        label="Alternatively, input a natural example and its original label (from above datasets) to generate an adversarial example.",

                    )
                    input_label = gr.Textbox(
                        placeholder="Original label, (must be a integer, because we use digits to represent labels in training)", 
                        label="Original Label",
                    )
                gr.Markdown(
                    "<h3 align='center'>Default parameters are set according to the main experiment setup in the report.</h2>",
                )
        with gr.Row():
            wir_percentage = gr.Textbox(
                placeholder="Enter percentage from WIR...",
                label="Percentage from WIR",
            )
            frequency_threshold = gr.Textbox(
                placeholder="Enter frequency threshold...",
                label="Frequency Threshold",
            )
            max_candidates = gr.Textbox(
                placeholder="Enter maximum number of candidates...",
                label="Maximum Number of Candidates",
            )
        msg_text = gr.Textbox(
            label="Message",
            placeholder="This is a message box to show any error messages.",
        )
        button_gen = gr.Button(
            "Generate an adversarial example to repair using Rapid (GPU: < 1 minute, CPU: 1-10 minutes)",
            variant="primary",
        )
        gpu_status_text = gr.Textbox(
            label='GPU status',
            placeholder="Please click to check",
        )
        button_check = gr.Button(
            "Check if GPU available",
            variant="primary"
        )

        button_check.click(
            fn=check_gpu,
            inputs=[],
            outputs=[
                gpu_status_text
            ]
        )

        gr.Markdown("<h2 align='center'>Generated Adversarial Example and Repaired Adversarial Example</h2>")

        with gr.Column():
            with gr.Group():
                with gr.Row():
                    output_original_example = gr.Textbox(label="Original Example")
                    output_original_label = gr.Textbox(label="Original Label")
                with gr.Row():
                    output_adv_example = gr.Textbox(label="Adversarial Example")
                    output_adv_label = gr.Textbox(label="Predicted Label of the Adversarial Example")
                with gr.Row():
                    output_repaired_example = gr.Textbox(
                        label="Repaired Adversarial Example by DCWIR"
                    )
                    output_repaired_label = gr.Textbox(label="Predicted Label of the Repaired Adversarial Example")

        gr.Markdown("<h2 align='center'>Example Difference (Comparisons)</p>")
        gr.Markdown("""
        <p align='center'>The (+) and (-) in the boxes indicate the added and deleted characters in the adversarial example compared to the original input natural example.</p>
            """)
        ori_text_diff = gr.HighlightedText(
            label="The Original Natural Example",
            combine_adjacent=True,
            show_legend=True,
        )
        adv_text_diff = gr.HighlightedText(
            label="Character Editions of Adversarial Example Compared to the Natural Example",
            combine_adjacent=True,
            show_legend=True,
        )

        restored_text_diff = gr.HighlightedText(
            label="Character Editions of Repaired Adversarial Example Compared to the Natural Example",
            combine_adjacent=True,
            show_legend=True,
        )

        gr.Markdown(
            "## <h2 align='center'>The Output of Reactive Perturbation Defocusing</p>"
        )
        with gr.Row():
            with gr.Column():
                with gr.Group():
                    output_is_adv_df = gr.DataFrame(
                        label="Adversarial Example Detection Result"
                    )
                    gr.Markdown(
                        """
                         - The is_adversarial field indicates if an adversarial example is detected.
                         - The perturbed_label is the predicted label of the adversarial example. 
                         - The confidence field represents the ratio of Inverted samples among the total number of generated candidates. 
                         """
                    )
            with gr.Column():
                with gr.Group():
                    output_df = gr.DataFrame(
                        label="Correction Classification Result"
                    )
                    gr.Markdown(
                      """
                        - If is_corrected=true, it has been Corrected by DCWIR. 
                        - The pred_label field indicates the standard classification result. 
                        - The confidence field represents ratio of the dominant class among all Inverted candidates.
                        - The is_correct field indicates whether the predicted label is correct.
                        
                        """
                    )

        # Bind functions to buttons
        button_gen.click(
            fn=run_demo,
            inputs=[input_dataset, input_attacker, input_sentence, input_label],
            outputs=[
                output_original_example,
                output_original_label,
                output_repaired_example,
                output_repaired_label,
                output_adv_example,
                ori_text_diff,
                adv_text_diff,
                restored_text_diff,
                output_adv_label,
                output_df,
                output_is_adv_df,
                msg_text
            ],
        )

    demo.queue(2).launch()