Spaces:
Runtime error
Runtime error
File size: 13,704 Bytes
1ef6bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import textattack
import transformers
import pandas as pd
import csv
import string
import pickle
# Construct our four components for `Attack`
from textattack.constraints.pre_transformation import (
RepeatModification,
StopwordModification,
)
from textattack.constraints.semantics import WordEmbeddingDistance
from textattack.transformations import WordSwapEmbedding
from textattack.search_methods import GreedyWordSwapWIR
import numpy as np
import json
import random
import re
import textattack.shared.attacked_text as atk
import torch.nn.functional as F
import torch
class InvertedText:
def __init__(
self,
swapped_indexes,
score,
attacked_text,
new_class,
):
self.attacked_text = attacked_text
self.swapped_indexes = (
swapped_indexes # dict of swapped indexes with their synonym
)
self.score = score # value of original class
self.new_class = new_class # class after inversion
def __repr__(self):
return f"InvertedText:\n attacked_text='{self.attacked_text}', \n swapped_indexes={self.swapped_indexes},\n score={self.score}"
def count_matching_classes(original, corrected, perturbed_texts=None):
if len(original) != len(corrected):
raise ValueError("Arrays must have the same length")
hard_samples = []
easy_samples = []
matching_count = 0
for i in range(len(corrected)):
if original[i] == corrected[i]:
matching_count += 1
easy_samples.append(perturbed_texts[i])
elif perturbed_texts != None:
hard_samples.append(perturbed_texts[i])
return matching_count, hard_samples, easy_samples
class Flow_Corrector:
def __init__(
self,
attack,
word_rank_file="en_full_ranked.json",
word_freq_file="en_full_freq.json",
wir_threshold=0.3,
):
self.attack = attack
self.attack.cuda_()
self.wir_threshold = wir_threshold
with open(word_rank_file, "r") as f:
self.word_ranked_frequence = json.load(f)
with open(word_freq_file, "r") as f:
self.word_frequence = json.load(f)
self.victim_model = attack.goal_function.model
def wir_gradient(
self,
attack,
victim_model,
detected_text,
):
_, indices_to_order = attack.get_indices_to_order(detected_text)
index_scores = np.zeros(len(indices_to_order))
grad_output = victim_model.get_grad(detected_text.tokenizer_input)
gradient = grad_output["gradient"]
word2token_mapping = detected_text.align_with_model_tokens(victim_model)
for i, index in enumerate(indices_to_order):
matched_tokens = word2token_mapping[index]
if not matched_tokens:
index_scores[i] = 0.0
else:
agg_grad = np.mean(gradient[matched_tokens], axis=0)
index_scores[i] = np.linalg.norm(agg_grad, ord=1)
index_order = np.array(indices_to_order)[(-index_scores).argsort()]
return index_order
def get_syn_freq_dict(
self,
index_order,
detected_text,
):
most_frequent_syn_dict = {}
no_syn = []
freq_thershold = len(self.word_ranked_frequence) / 10
for idx in index_order:
# get the synonyms of a specific index
try:
synonyms = [
attacked_text.words[idx]
for attacked_text in self.attack.get_transformations(
detected_text, detected_text, indices_to_modify=[idx]
)
]
# getting synonyms that exists in dataset with thiere frequency rank
ranked_synonyms = {
syn: self.word_ranked_frequence[syn]
for syn in synonyms
if syn in self.word_ranked_frequence.keys()
and self.word_ranked_frequence[syn] < freq_thershold
and self.word_ranked_frequence[detected_text.words[idx]]
> self.word_ranked_frequence[syn]
}
# selecting the M most frequent synonym
if list(ranked_synonyms.keys()) != []:
most_frequent_syn_dict[idx] = list(ranked_synonyms.keys())
except:
# no synonyms avaialble in the dataset
no_syn.append(idx)
return most_frequent_syn_dict
def build_candidates(
self, detected_text, most_frequent_syn_dict: dict, max_attempt: int
):
candidates = {}
for _ in range(max_attempt):
syn_dict = {}
current_text = detected_text
for index in most_frequent_syn_dict.keys():
syn = random.choice(most_frequent_syn_dict[index])
syn_dict[index] = syn
current_text = current_text.replace_word_at_index(index, syn)
candidates[current_text] = syn_dict
return candidates
def find_dominant_class(self, inverted_texts):
class_counts = {} # Dictionary to store the count of each new class
for text in inverted_texts:
new_class = text.new_class
class_counts[new_class] = class_counts.get(new_class, 0) + 1
# Find the most dominant class
most_dominant_class = max(class_counts, key=class_counts.get)
return most_dominant_class
def correct(self, detected_texts):
corrected_classes = []
for detected_text in detected_texts:
# convert to Attacked texts
detected_text = atk.AttackedText(detected_text)
# getting 30% most important indexes
index_order = self.wir_gradient(
self.attack, self.victim_model, detected_text
)
index_order = index_order[: int(len(index_order) * self.wir_threshold)]
# getting synonyms according to frequency conditiontions
most_frequent_syn_dict = self.get_syn_freq_dict(index_order, detected_text)
# generate M candidates
candidates = self.build_candidates(
detected_text, most_frequent_syn_dict, max_attempt=100
)
original_probs = F.softmax(self.victim_model(detected_text.text), dim=1)
original_class = torch.argmax(original_probs).item()
original_golden_prob = float(original_probs[0][original_class])
nbr_inverted = 0
inverted_texts = [] # a dictionary of inverted texts with
bad, impr = 0, 0
dict_deltas = {}
batch_inputs = [candidate.text for candidate in candidates.keys()]
batch_outputs = self.victim_model(batch_inputs)
probabilities = F.softmax(batch_outputs, dim=1)
for i, (candidate, syn_dict) in enumerate(candidates.items()):
corrected_class = torch.argmax(probabilities[i]).item()
new_golden_probability = float(probabilities[i][corrected_class])
if corrected_class != original_class:
nbr_inverted += 1
inverted_texts.append(
InvertedText(
syn_dict, new_golden_probability, candidate, corrected_class
)
)
else:
delta = new_golden_probability - original_golden_prob
if delta <= 0:
bad += 1
else:
impr += 1
dict_deltas[candidate] = delta
if len(original_probs[0]) > 2 and len(inverted_texts) >= len(candidates) / (
len(original_probs[0])
):
# selecting the most dominant class
dominant_class = self.find_dominant_class(inverted_texts)
elif len(inverted_texts) >= len(candidates) / 2:
dominant_class = corrected_class
else:
dominant_class = original_class
corrected_classes.append(dominant_class)
return corrected_classes
def remove_brackets(text):
text = text.replace("[[", "")
text = text.replace("]]", "")
return text
def clean_text(text):
pattern = "[" + re.escape(string.punctuation) + "]"
cleaned_text = re.sub(pattern, " ", text)
return cleaned_text
# Load model, tokenizer, and model_wrapper
model = transformers.AutoModelForSequenceClassification.from_pretrained(
"textattack/bert-base-uncased-ag-news"
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
"textattack/bert-base-uncased-ag-news"
)
model_wrapper = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer)
goal_function = textattack.goal_functions.UntargetedClassification(model_wrapper)
constraints = [
RepeatModification(),
StopwordModification(),
WordEmbeddingDistance(min_cos_sim=0.9),
]
transformation = WordSwapEmbedding(max_candidates=50)
search_method = GreedyWordSwapWIR(wir_method="gradient")
# Construct the actual attack
attack = textattack.Attack(goal_function, constraints, transformation, search_method)
attack.cuda_()
results = pd.read_csv("ag_news_results.csv")
perturbed_texts = [
results["perturbed_text"][i]
for i in range(len(results))
if results["result_type"][i] == "Successful"
]
original_texts = [
results["original_text"][i]
for i in range(len(results))
if results["result_type"][i] == "Successful"
]
perturbed_texts = [remove_brackets(text) for text in perturbed_texts]
original_texts = [remove_brackets(text) for text in original_texts]
perturbed_texts = [clean_text(text) for text in perturbed_texts]
original_texts = [clean_text(text) for text in original_texts]
victim_model = attack.goal_function.model
print("Getting corrected classes")
print("This may take a while ...")
# we can use directly resultds in csv file
original_classes = [
torch.argmax(F.softmax(victim_model(original_text), dim=1)).item()
for original_text in original_texts
]
batch_size = 1000
num_batches = (len(perturbed_texts) + batch_size - 1) // batch_size
batched_perturbed_texts = []
batched_original_texts = []
batched_original_classes = []
for i in range(num_batches):
start = i * batch_size
end = min(start + batch_size, len(perturbed_texts))
batched_perturbed_texts.append(perturbed_texts[start:end])
batched_original_texts.append(original_texts[start:end])
batched_original_classes.append(original_classes[start:end])
print(batched_original_classes)
hard_samples_list = []
easy_samples_list = []
# Open a CSV file for writing
csv_filename = "flow_correction_results_ag_news.csv"
with open(csv_filename, "w", newline="") as csvfile:
fieldnames = ["freq_threshold", "batch_num", "match_perturbed", "match_original"]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
# Write the header row
writer.writeheader()
# Iterate over batched lists
batch_num = 0
for perturbed, original, classes in zip(
batched_perturbed_texts, batched_original_texts, batched_original_classes
):
batch_num += 1
print(f"Processing batch number: {batch_num}")
for i in range(2):
wir_threshold = 0.1 * (i + 1)
print(f"Setting Word threshold to: {wir_threshold}")
corrector = Flow_Corrector(
attack,
word_rank_file="en_full_ranked.json",
word_freq_file="en_full_freq.json",
wir_threshold=wir_threshold,
)
# Correct perturbed texts
print("Correcting perturbed texts...")
corrected_perturbed_classes = corrector.correct(perturbed)
match_perturbed, hard_samples, easy_samples = count_matching_classes(
classes, corrected_perturbed_classes, perturbed
)
hard_samples_list.extend(hard_samples)
easy_samples_list.extend(easy_samples)
print(f"Number of matching classes (perturbed): {match_perturbed}")
# Correct original texts
print("Correcting original texts...")
corrected_original_classes = corrector.correct(original)
match_original, hard_samples, easy_samples = count_matching_classes(
classes, corrected_original_classes, perturbed
)
print(f"Number of matching classes (original): {match_original}")
# Write results to CSV file
print("Writing results to CSV file...")
writer.writerow(
{
"freq_threshold": wir_threshold,
"batch_num": batch_num,
"match_perturbed": match_perturbed/len(perturbed),
"match_original": match_original/len(perturbed),
}
)
print("-" * 20)
print("savig samples for more statistics studies")
# Save hard_samples_list and easy_samples_list to files
with open('hard_samples.pkl', 'wb') as f:
pickle.dump(hard_samples_list, f)
with open('easy_samples.pkl', 'wb') as f:
pickle.dump(easy_samples_list, f) |