File size: 18,695 Bytes
ea07244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6781708
 
 
ea07244
 
6781708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
994c238
 
 
6781708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5633db
6781708
 
 
 
 
f5633db
6781708
 
 
 
 
 
 
 
 
 
 
 
2940873
6781708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44ee875
e9d0f12
44ee875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6781708
f968199
c0c87b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f968199
6781708
 
 
c0c87b2
6781708
 
 
 
c0c87b2
 
6781708
 
c0c87b2
 
 
 
 
 
6781708
 
 
c0c87b2
6781708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0c87b2
 
 
 
6781708
 
 
 
 
 
 
 
 
c0c87b2
6781708
 
 
 
 
21fcf42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0a085b
 
 
2d2ef67
f0a085b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06b4245
 
44ee875
 
06b4245
f0a085b
 
 
 
 
ab2e12a
 
149d674
 
a1e6695
 
 
 
f0a085b
 
 
 
06b4245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7cc7c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b30f90b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26be81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab2e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e6695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149d674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e6695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44ee875
 
 
 
a1e6695
 
 
 
06b4245
e4911f7
06b4245
f7cc7c3
06b4245
 
ea07244
 
b30f90b
 
ea07244
 
f5633db
 
 
b26be81
ea07244
 
 
 
 
 
ab2e12a
 
 
 
ea07244
c0c87b2
 
ea07244
 
 
 
149d674
 
 
 
a1e6695
 
 
 
ea07244
44ee875
8ebeeb8
a1e6695
 
 
bf79b4c
ea07244
 
ab2e12a
149d674
a1e6695
ea07244
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
# Copyright      2022-2023  Xiaomi Corp.        (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import lru_cache

import sherpa_onnx
from huggingface_hub import hf_hub_download

sample_rate = 16000


def _get_nn_model_filename(
    repo_id: str,
    filename: str,
    subfolder: str = "exp",
) -> str:
    nn_model_filename = hf_hub_download(
        repo_id=repo_id,
        filename=filename,
        subfolder=subfolder,
    )
    return nn_model_filename


get_file = _get_nn_model_filename


def _get_bpe_model_filename(
    repo_id: str,
    filename: str = "bpe.model",
    subfolder: str = "data/lang_bpe_500",
) -> str:
    bpe_model_filename = hf_hub_download(
        repo_id=repo_id,
        filename=filename,
        subfolder=subfolder,
    )
    return bpe_model_filename


def _get_token_filename(
    repo_id: str,
    filename: str = "tokens.txt",
    subfolder: str = "data/lang_char",
) -> str:
    token_filename = hf_hub_download(
        repo_id=repo_id,
        filename=filename,
        subfolder=subfolder,
    )
    return token_filename


@lru_cache(maxsize=10)
def _get_whisper_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    name = repo_id.split("-")[1]
    assert name in ("tiny.en", "base.en", "small.en", "medium.en"), repo_id
    full_repo_id = "csukuangfj/sherpa-onnx-whisper-" + name
    encoder = _get_nn_model_filename(
        repo_id=full_repo_id,
        filename=f"{name}-encoder.int8.onnx",
        subfolder=".",
    )

    decoder = _get_nn_model_filename(
        repo_id=full_repo_id,
        filename=f"{name}-decoder.int8.onnx",
        subfolder=".",
    )

    tokens = _get_token_filename(
        repo_id=full_repo_id, subfolder=".", filename=f"{name}-tokens.txt"
    )

    recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
        encoder=encoder,
        decoder=decoder,
        tokens=tokens,
        num_threads=2,
        tail_paddings=2000,
    )

    return recognizer


@lru_cache(maxsize=10)
def _get_paraformer_zh_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    assert repo_id in [
        "csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28",
    ], repo_id

    nn_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="model.int8.onnx",
        subfolder=".",
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder=".")

    recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
        paraformer=nn_model,
        tokens=tokens,
        num_threads=2,
        sample_rate=sample_rate,
        feature_dim=80,
        decoding_method="greedy_search",
        debug=False,
    )

    return recognizer


@lru_cache(maxsize=5)
def _get_chinese_dialect_models(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    assert repo_id in [
        "csukuangfj/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04",
    ], repo_id

    nn_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="model.int8.onnx",
        subfolder=".",
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder=".")

    recognizer = sherpa_onnx.OfflineRecognizer.from_telespeech_ctc(
        model=nn_model,
        tokens=tokens,
        num_threads=2,
    )

    return recognizer


@lru_cache(maxsize=10)
def _get_russian_pre_trained_model_ctc(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    assert repo_id in (
        "csukuangfj/sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24",
    ), repo_id

    model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="model.int8.onnx",
        subfolder=".",
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder=".")

    recognizer = sherpa_onnx.OfflineRecognizer.from_nemo_ctc(
        model=model,
        tokens=tokens,
        num_threads=2,
    )

    return recognizer


@lru_cache(maxsize=10)
def _get_russian_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    assert repo_id in (
        "alphacep/vosk-model-ru",
        "alphacep/vosk-model-small-ru",
        "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24",
    ), repo_id

    if repo_id == "alphacep/vosk-model-ru":
        model_dir = "am-onnx"
        encoder = "encoder.onnx"
        model_type = "transducer"
    elif repo_id == "alphacep/vosk-model-small-ru":
        model_dir = "am"
        encoder = "encoder.onnx"
        model_type = "transducer"
    elif repo_id == "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24":
        model_dir = "."
        encoder = "encoder.int8.onnx"
        model_type = "nemo_transducer"

    encoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename=encoder,
        subfolder=model_dir,
    )

    decoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="decoder.onnx",
        subfolder=model_dir,
    )

    joiner_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="joiner.onnx",
        subfolder=model_dir,
    )

    if repo_id == "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24":
        tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
    else:
        tokens = _get_token_filename(repo_id=repo_id, subfolder="lang")

    recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
        tokens=tokens,
        encoder=encoder_model,
        decoder=decoder_model,
        joiner=joiner_model,
        num_threads=2,
        sample_rate=16000,
        feature_dim=80,
        model_type=model_type,
    )

    return recognizer


@lru_cache(maxsize=2)
def get_punct_model() -> sherpa_onnx.OfflinePunctuation:
    model = _get_nn_model_filename(
        repo_id="csukuangfj/sherpa-onnx-punct-ct-transformer-zh-en-vocab272727-2024-04-12",
        filename="model.onnx",
        subfolder=".",
    )
    config = sherpa_onnx.OfflinePunctuationConfig(
        model=sherpa_onnx.OfflinePunctuationModelConfig(ct_transformer=model),
    )

    punct = sherpa_onnx.OfflinePunctuation(config)
    return punct


def get_vad() -> sherpa_onnx.VoiceActivityDetector:
    vad_model = _get_nn_model_filename(
        repo_id="csukuangfj/vad",
        filename="silero_vad_v5.onnx",
        subfolder=".",
    )

    config = sherpa_onnx.VadModelConfig()
    config.silero_vad.model = vad_model
    config.silero_vad.min_silence_duration = 0.15
    config.silero_vad.min_speech_duration = 0.25
    config.sample_rate = sample_rate

    vad = sherpa_onnx.VoiceActivityDetector(
        config,
        buffer_size_in_seconds=180,
    )

    return vad


@lru_cache(maxsize=10)
def get_pretrained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    if repo_id in chinese_models:
        return chinese_models[repo_id](repo_id)
    elif repo_id in chinese_dialect_models:
        return chinese_dialect_models[repo_id](repo_id)
    elif repo_id in english_models:
        return english_models[repo_id](repo_id)
    elif repo_id in chinese_english_mixed_models:
        return chinese_english_mixed_models[repo_id](repo_id)
    elif repo_id in russian_models:
        return russian_models[repo_id](repo_id)
    elif repo_id in korean_models:
        return korean_models[repo_id](repo_id)
    elif repo_id in thai_models:
        return thai_models[repo_id](repo_id)
    elif repo_id in japanese_models:
        return japanese_models[repo_id](repo_id)
    elif repo_id in zh_en_ko_ja_yue_models:
        return zh_en_ko_ja_yue_models[repo_id](repo_id)
    else:
        raise ValueError(f"Unsupported repo_id: {repo_id}")


def _get_wenetspeech_pre_trained_model(repo_id):
    assert repo_id in (
        "csukuangfj/sherpa-onnx-conformer-zh-stateless2-2023-05-23",
    ), repo_id

    encoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="encoder-epoch-99-avg-1.onnx",
        subfolder=".",
    )

    decoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="decoder-epoch-99-avg-1.onnx",
        subfolder=".",
    )

    joiner_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="joiner-epoch-99-avg-1.onnx",
        subfolder=".",
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder=".")

    recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
        tokens=tokens,
        encoder=encoder_model,
        decoder=decoder_model,
        joiner=joiner_model,
        num_threads=2,
        sample_rate=16000,
        feature_dim=80,
        decoding_method="greedy_search",
    )

    return recognizer


def _get_multi_zh_hans_pre_trained_model(repo_id):
    assert repo_id in ("zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2",), repo_id

    encoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="encoder-epoch-20-avg-1.onnx",
        subfolder=".",
    )

    decoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="decoder-epoch-20-avg-1.onnx",
        subfolder=".",
    )

    joiner_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="joiner-epoch-20-avg-1.onnx",
        subfolder=".",
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder=".")

    recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
        tokens=tokens,
        encoder=encoder_model,
        decoder=decoder_model,
        joiner=joiner_model,
        num_threads=2,
        sample_rate=16000,
        feature_dim=80,
        decoding_method="greedy_search",
    )

    return recognizer


@lru_cache(maxsize=10)
def _get_moonshine_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    assert repo_id in ("moonshine-tiny", "moonshine-base"), repo_id

    if repo_id == "moonshine-tiny":
        full_repo_id = "csukuangfj/sherpa-onnx-moonshine-tiny-en-int8"
    elif repo_id == "moonshine-base":
        full_repo_id = "csukuangfj/sherpa-onnx-moonshine-base-en-int8"
    else:
        raise ValueError(f"Unknown repo_id: {repo_id}")

    preprocessor = _get_nn_model_filename(
        repo_id=full_repo_id,
        filename=f"preprocess.onnx",
        subfolder=".",
    )

    encoder = _get_nn_model_filename(
        repo_id=full_repo_id,
        filename=f"encode.int8.onnx",
        subfolder=".",
    )

    uncached_decoder = _get_nn_model_filename(
        repo_id=full_repo_id,
        filename=f"uncached_decode.int8.onnx",
        subfolder=".",
    )

    cached_decoder = _get_nn_model_filename(
        repo_id=full_repo_id,
        filename=f"cached_decode.int8.onnx",
        subfolder=".",
    )

    tokens = _get_token_filename(
        repo_id=full_repo_id,
        subfolder=".",
        filename="tokens.txt",
    )

    recognizer = sherpa_onnx.OfflineRecognizer.from_moonshine(
        preprocessor=preprocessor,
        encoder=encoder,
        uncached_decoder=uncached_decoder,
        cached_decoder=cached_decoder,
        tokens=tokens,
        num_threads=2,
    )

    return recognizer


def _get_english_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    assert (
        repo_id
        == "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04"
    ), repo_id

    encoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="encoder-epoch-30-avg-4.onnx",
        subfolder="exp",
    )

    decoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="decoder-epoch-30-avg-4.onnx",
        subfolder="exp",
    )

    joiner_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="joiner-epoch-30-avg-4.onnx",
        subfolder="exp",
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder="lang_bpe_500")

    recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
        tokens=tokens,
        encoder=encoder_model,
        decoder=decoder_model,
        joiner=joiner_model,
        num_threads=2,
        sample_rate=16000,
        feature_dim=80,
        decoding_method="greedy_search",
    )

    return recognizer


@lru_cache(maxsize=10)
def _get_korean_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    assert repo_id in ("k2-fsa/sherpa-onnx-zipformer-korean-2024-06-24",), repo_id

    encoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="encoder-epoch-99-avg-1.int8.onnx",
        subfolder=".",
    )

    decoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="decoder-epoch-99-avg-1.onnx",
        subfolder=".",
    )

    joiner_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="joiner-epoch-99-avg-1.onnx",
        subfolder=".",
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder=".")

    recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
        tokens=tokens,
        encoder=encoder_model,
        decoder=decoder_model,
        joiner=joiner_model,
        num_threads=2,
        sample_rate=16000,
        feature_dim=80,
    )

    return recognizer


@lru_cache(maxsize=10)
def _get_japanese_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    assert repo_id in ("reazon-research/reazonspeech-k2-v2",), repo_id

    encoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="encoder-epoch-99-avg-1.int8.onnx",
        subfolder=".",
    )

    decoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="decoder-epoch-99-avg-1.onnx",
        subfolder=".",
    )

    joiner_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="joiner-epoch-99-avg-1.onnx",
        subfolder=".",
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder=".")

    recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
        tokens=tokens,
        encoder=encoder_model,
        decoder=decoder_model,
        joiner=joiner_model,
        num_threads=2,
        sample_rate=16000,
        feature_dim=80,
    )

    return recognizer


@lru_cache(maxsize=10)
def _get_yifan_thai_pretrained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    assert repo_id in (
        "yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20",
    ), repo_id

    encoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="encoder-epoch-12-avg-5.int8.onnx",
        subfolder="exp",
    )

    decoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="decoder-epoch-12-avg-5.onnx",
        subfolder="exp",
    )

    joiner_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="joiner-epoch-12-avg-5.int8.onnx",
        subfolder="exp",
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_2000")

    recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
        tokens=tokens,
        encoder=encoder_model,
        decoder=decoder_model,
        joiner=joiner_model,
        num_threads=2,
        sample_rate=16000,
        feature_dim=80,
    )

    return recognizer


@lru_cache(maxsize=10)
def _get_sense_voice_pre_trained_model(
    repo_id: str,
) -> sherpa_onnx.OfflineRecognizer:
    assert repo_id in [
        "csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17",
    ], repo_id

    nn_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="model.int8.onnx",
        subfolder=".",
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder=".")

    recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice(
        model=nn_model,
        tokens=tokens,
        num_threads=2,
        sample_rate=sample_rate,
        feature_dim=80,
        decoding_method="greedy_search",
        debug=True,
        use_itn=True,
    )

    return recognizer


chinese_dialect_models = {
    "csukuangfj/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04": _get_chinese_dialect_models,
}

zh_en_ko_ja_yue_models = {
    "csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17": _get_sense_voice_pre_trained_model,
}

chinese_models = {
    "csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_zh_pre_trained_model,
    "csukuangfj/sherpa-onnx-conformer-zh-stateless2-2023-05-23": _get_wenetspeech_pre_trained_model,  # noqa
    "zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2": _get_multi_zh_hans_pre_trained_model,  # noqa
}

english_models = {
    "whisper-tiny.en": _get_whisper_model,
    "moonshine-tiny": _get_moonshine_model,
    "moonshine-base": _get_moonshine_model,
    "whisper-base.en": _get_whisper_model,
    "whisper-small.en": _get_whisper_model,
    "whisper-distil-small.en": _get_whisper_model,
    "whisper-medium.en": _get_whisper_model,
    "whisper-distil-medium.en": _get_whisper_model,
    "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04": _get_english_model,  # noqa
}

chinese_english_mixed_models = {
    "csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_zh_pre_trained_model,
}

korean_models = {
    "k2-fsa/sherpa-onnx-zipformer-korean-2024-06-24": _get_korean_pre_trained_model,
}

russian_models = {
    "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24": _get_russian_pre_trained_model,
    "csukuangfj/sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24": _get_russian_pre_trained_model_ctc,
    "alphacep/vosk-model-ru": _get_russian_pre_trained_model,
    "alphacep/vosk-model-small-ru": _get_russian_pre_trained_model,
}

thai_models = {
    "yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20": _get_yifan_thai_pretrained_model,
}

japanese_models = {
    "reazon-research/reazonspeech-k2-v2": _get_japanese_pre_trained_model
}

language_to_models = {
    "超多种中文方言": list(chinese_dialect_models.keys()),
    "Chinese+English": list(chinese_english_mixed_models.keys()),
    "Chinese+English+Korean+Japanese+Cantoes(中英韩日粤语)": list(
        zh_en_ko_ja_yue_models.keys()
    ),
    "Chinese": list(chinese_models.keys()),
    "English": list(english_models.keys()),
    "Russian": list(russian_models.keys()),
    "Korean": list(korean_models.keys()),
    "Thai": list(thai_models.keys()),
    "Japanese": list(japanese_models.keys()),
}