|
import subprocess |
|
import os |
|
import sys |
|
import errno |
|
import shutil |
|
import yt_dlp |
|
from mega import Mega |
|
import datetime |
|
import unicodedata |
|
import torch |
|
import glob |
|
import gradio as gr |
|
import gdown |
|
import zipfile |
|
import traceback |
|
import json |
|
import mdx |
|
from mdx_processing_script import get_model_list,id_to_ptm,prepare_mdx,run_mdx |
|
import requests |
|
import wget |
|
import ffmpeg |
|
import hashlib |
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
from unidecode import unidecode |
|
import re |
|
import time |
|
from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM |
|
from infer.modules.vc.pipeline import Pipeline |
|
VC = Pipeline |
|
from lib.infer_pack.models import ( |
|
SynthesizerTrnMs256NSFsid, |
|
SynthesizerTrnMs256NSFsid_nono, |
|
SynthesizerTrnMs768NSFsid, |
|
SynthesizerTrnMs768NSFsid_nono, |
|
) |
|
from MDXNet import MDXNetDereverb |
|
from configs.config import Config |
|
from infer_uvr5 import _audio_pre_, _audio_pre_new |
|
from huggingface_hub import HfApi, list_models |
|
from huggingface_hub import login |
|
from i18n import I18nAuto |
|
i18n = I18nAuto() |
|
from bs4 import BeautifulSoup |
|
from sklearn.cluster import MiniBatchKMeans |
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
config = Config() |
|
tmp = os.path.join(now_dir, "TEMP") |
|
shutil.rmtree(tmp, ignore_errors=True) |
|
os.environ["TEMP"] = tmp |
|
weight_root = os.getenv("weight_root") |
|
weight_uvr5_root = os.getenv("weight_uvr5_root") |
|
index_root = os.getenv("index_root") |
|
audio_root = "audios" |
|
names = [] |
|
for name in os.listdir(weight_root): |
|
if name.endswith(".pth"): |
|
names.append(name) |
|
index_paths = [] |
|
|
|
global indexes_list |
|
indexes_list = [] |
|
|
|
audio_paths = [] |
|
for root, dirs, files in os.walk(index_root, topdown=False): |
|
for name in files: |
|
if name.endswith(".index") and "trained" not in name: |
|
index_paths.append("%s\\%s" % (root, name)) |
|
|
|
for root, dirs, files in os.walk(audio_root, topdown=False): |
|
for name in files: |
|
audio_paths.append("%s/%s" % (root, name)) |
|
|
|
uvr5_names = [] |
|
for name in os.listdir(weight_uvr5_root): |
|
if name.endswith(".pth") or "onnx" in name: |
|
uvr5_names.append(name.replace(".pth", "")) |
|
|
|
def calculate_md5(file_path): |
|
hash_md5 = hashlib.md5() |
|
with open(file_path, "rb") as f: |
|
for chunk in iter(lambda: f.read(4096), b""): |
|
hash_md5.update(chunk) |
|
return hash_md5.hexdigest() |
|
|
|
def format_title(title): |
|
formatted_title = re.sub(r'[^\w\s-]', '', title) |
|
formatted_title = formatted_title.replace(" ", "_") |
|
return formatted_title |
|
|
|
def silentremove(filename): |
|
try: |
|
os.remove(filename) |
|
except OSError as e: |
|
if e.errno != errno.ENOENT: |
|
raise |
|
def get_md5(temp_folder): |
|
for root, subfolders, files in os.walk(temp_folder): |
|
for file in files: |
|
if not file.startswith("G_") and not file.startswith("D_") and file.endswith(".pth") and not "_G_" in file and not "_D_" in file: |
|
md5_hash = calculate_md5(os.path.join(root, file)) |
|
return md5_hash |
|
|
|
return None |
|
|
|
def find_parent(search_dir, file_name): |
|
for dirpath, dirnames, filenames in os.walk(search_dir): |
|
if file_name in filenames: |
|
return os.path.abspath(dirpath) |
|
return None |
|
|
|
def find_folder_parent(search_dir, folder_name): |
|
for dirpath, dirnames, filenames in os.walk(search_dir): |
|
if folder_name in dirnames: |
|
return os.path.abspath(dirpath) |
|
return None |
|
|
|
|
|
def delete_large_files(directory_path, max_size_megabytes): |
|
for filename in os.listdir(directory_path): |
|
file_path = os.path.join(directory_path, filename) |
|
if os.path.isfile(file_path): |
|
size_in_bytes = os.path.getsize(file_path) |
|
size_in_megabytes = size_in_bytes / (1024 * 1024) |
|
|
|
if size_in_megabytes > max_size_megabytes: |
|
print("###################################") |
|
print(f"Deleting s*** {filename} (Size: {size_in_megabytes:.2f} MB)") |
|
os.remove(file_path) |
|
print("###################################") |
|
|
|
def download_from_url(url): |
|
parent_path = find_folder_parent(".", "pretrained_v2") |
|
zips_path = os.path.join(parent_path, 'zips') |
|
print(f"Limit download size in MB {os.getenv('MAX_DOWNLOAD_SIZE')}, duplicate the space for modify the limit") |
|
|
|
if url != '': |
|
print(i18n("Downloading the file: ") + f"{url}") |
|
if "drive.google.com" in url: |
|
if "file/d/" in url: |
|
file_id = url.split("file/d/")[1].split("/")[0] |
|
elif "id=" in url: |
|
file_id = url.split("id=")[1].split("&")[0] |
|
else: |
|
return None |
|
|
|
if file_id: |
|
os.chdir('./zips') |
|
result = subprocess.run(["gdown", f"https://drive.google.com/uc?id={file_id}", "--fuzzy"], capture_output=True, text=True, encoding='utf-8') |
|
if "Too many users have viewed or downloaded this file recently" in str(result.stderr): |
|
return "too much use" |
|
if "Cannot retrieve the public link of the file." in str(result.stderr): |
|
return "private link" |
|
print(result.stderr) |
|
|
|
elif "/blob/" in url: |
|
os.chdir('./zips') |
|
url = url.replace("blob", "resolve") |
|
response = requests.get(url) |
|
if response.status_code == 200: |
|
file_name = url.split('/')[-1] |
|
with open(os.path.join(zips_path, file_name), "wb") as newfile: |
|
newfile.write(response.content) |
|
else: |
|
os.chdir(parent_path) |
|
elif "mega.nz" in url: |
|
if "#!" in url: |
|
file_id = url.split("#!")[1].split("!")[0] |
|
elif "file/" in url: |
|
file_id = url.split("file/")[1].split("/")[0] |
|
else: |
|
return None |
|
if file_id: |
|
m = Mega() |
|
m.download_url(url, zips_path) |
|
elif "/tree/main" in url: |
|
response = requests.get(url) |
|
soup = BeautifulSoup(response.content, 'html.parser') |
|
temp_url = '' |
|
for link in soup.find_all('a', href=True): |
|
if link['href'].endswith('.zip'): |
|
temp_url = link['href'] |
|
break |
|
if temp_url: |
|
url = temp_url |
|
url = url.replace("blob", "resolve") |
|
if "huggingface.co" not in url: |
|
url = "https://huggingface.co" + url |
|
|
|
wget.download(url) |
|
else: |
|
print("No .zip file found on the page.") |
|
elif "cdn.discordapp.com" in url: |
|
file = requests.get(url) |
|
if file.status_code == 200: |
|
name = url.split('/') |
|
with open(os.path.join(zips_path, name[len(name)-1]), "wb") as newfile: |
|
newfile.write(file.content) |
|
else: |
|
return None |
|
elif "pixeldrain.com" in url: |
|
try: |
|
file_id = url.split("pixeldrain.com/u/")[1] |
|
os.chdir('./zips') |
|
print(file_id) |
|
response = requests.get(f"https://pixeldrain.com/api/file/{file_id}") |
|
if response.status_code == 200: |
|
file_name = response.headers.get("Content-Disposition").split('filename=')[-1].strip('";') |
|
if not os.path.exists(zips_path): |
|
os.makedirs(zips_path) |
|
with open(os.path.join(zips_path, file_name), "wb") as newfile: |
|
newfile.write(response.content) |
|
os.chdir(parent_path) |
|
return "downloaded" |
|
else: |
|
os.chdir(parent_path) |
|
return None |
|
except Exception as e: |
|
print(e) |
|
os.chdir(parent_path) |
|
return None |
|
else: |
|
os.chdir('./zips') |
|
wget.download(url) |
|
|
|
|
|
delete_large_files(zips_path, int(os.getenv("MAX_DOWNLOAD_SIZE"))) |
|
os.chdir(parent_path) |
|
print(i18n("Full download")) |
|
return "downloaded" |
|
else: |
|
return None |
|
|
|
class error_message(Exception): |
|
def __init__(self, mensaje): |
|
self.mensaje = mensaje |
|
super().__init__(mensaje) |
|
|
|
def get_vc(sid, to_return_protect0, to_return_protect1): |
|
global n_spk, tgt_sr, net_g, vc, cpt, version |
|
if sid == "" or sid == []: |
|
global hubert_model |
|
if hubert_model is not None: |
|
print("clean_empty_cache") |
|
del net_g, n_spk, vc, hubert_model, tgt_sr |
|
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
if_f0 = cpt.get("f0", 1) |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid( |
|
*cpt["config"], is_half=config.is_half |
|
) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid( |
|
*cpt["config"], is_half=config.is_half |
|
) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g, cpt |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
cpt = None |
|
return ( |
|
{"visible": False, "__type__": "update"}, |
|
{"visible": False, "__type__": "update"}, |
|
{"visible": False, "__type__": "update"}, |
|
) |
|
person = "%s/%s" % (weight_root, sid) |
|
print("loading %s" % person) |
|
cpt = torch.load(person, map_location="cpu") |
|
tgt_sr = cpt["config"][-1] |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
if_f0 = cpt.get("f0", 1) |
|
if if_f0 == 0: |
|
to_return_protect0 = to_return_protect1 = { |
|
"visible": False, |
|
"value": 0.5, |
|
"__type__": "update", |
|
} |
|
else: |
|
to_return_protect0 = { |
|
"visible": True, |
|
"value": to_return_protect0, |
|
"__type__": "update", |
|
} |
|
to_return_protect1 = { |
|
"visible": True, |
|
"value": to_return_protect1, |
|
"__type__": "update", |
|
} |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g.enc_q |
|
print(net_g.load_state_dict(cpt["weight"], strict=False)) |
|
net_g.eval().to(config.device) |
|
if config.is_half: |
|
net_g = net_g.half() |
|
else: |
|
net_g = net_g.float() |
|
vc = VC(tgt_sr, config) |
|
n_spk = cpt["config"][-3] |
|
return ( |
|
{"visible": True, "maximum": n_spk, "__type__": "update"}, |
|
to_return_protect0, |
|
to_return_protect1, |
|
) |
|
|
|
def load_downloaded_model(url): |
|
parent_path = find_folder_parent(".", "pretrained_v2") |
|
try: |
|
infos = [] |
|
logs_folders = ['0_gt_wavs','1_16k_wavs','2a_f0','2b-f0nsf','3_feature256','3_feature768'] |
|
zips_path = os.path.join(parent_path, 'zips') |
|
unzips_path = os.path.join(parent_path, 'unzips') |
|
weights_path = os.path.join(parent_path, 'weights') |
|
logs_dir = "" |
|
|
|
if os.path.exists(zips_path): |
|
shutil.rmtree(zips_path) |
|
if os.path.exists(unzips_path): |
|
shutil.rmtree(unzips_path) |
|
|
|
os.mkdir(zips_path) |
|
os.mkdir(unzips_path) |
|
|
|
download_file = download_from_url(url) |
|
if not download_file: |
|
print(i18n("The file could not be downloaded.")) |
|
infos.append(i18n("The file could not be downloaded.")) |
|
yield "\n".join(infos) |
|
elif download_file == "downloaded": |
|
print(i18n("It has been downloaded successfully.")) |
|
infos.append(i18n("It has been downloaded successfully.")) |
|
yield "\n".join(infos) |
|
elif download_file == "too much use": |
|
raise Exception(i18n("Too many users have recently viewed or downloaded this file")) |
|
elif download_file == "private link": |
|
raise Exception(i18n("Cannot get file from this private link")) |
|
|
|
for filename in os.listdir(zips_path): |
|
if filename.endswith(".zip"): |
|
zipfile_path = os.path.join(zips_path,filename) |
|
print(i18n("Proceeding with the extraction...")) |
|
infos.append(i18n("Proceeding with the extraction...")) |
|
shutil.unpack_archive(zipfile_path, unzips_path, 'zip') |
|
model_name = os.path.basename(zipfile_path) |
|
logs_dir = os.path.join(parent_path,'logs', os.path.normpath(str(model_name).replace(".zip",""))) |
|
yield "\n".join(infos) |
|
else: |
|
print(i18n("Unzip error.")) |
|
infos.append(i18n("Unzip error.")) |
|
yield "\n".join(infos) |
|
|
|
index_file = False |
|
model_file = False |
|
D_file = False |
|
G_file = False |
|
|
|
for path, subdirs, files in os.walk(unzips_path): |
|
for item in files: |
|
item_path = os.path.join(path, item) |
|
if not 'G_' in item and not 'D_' in item and item.endswith('.pth'): |
|
model_file = True |
|
model_name = item.replace(".pth","") |
|
logs_dir = os.path.join(parent_path,'logs', model_name) |
|
if os.path.exists(logs_dir): |
|
shutil.rmtree(logs_dir) |
|
os.mkdir(logs_dir) |
|
if not os.path.exists(weights_path): |
|
os.mkdir(weights_path) |
|
if os.path.exists(os.path.join(weights_path, item)): |
|
os.remove(os.path.join(weights_path, item)) |
|
if os.path.exists(item_path): |
|
shutil.move(item_path, weights_path) |
|
|
|
if not model_file and not os.path.exists(logs_dir): |
|
os.mkdir(logs_dir) |
|
for path, subdirs, files in os.walk(unzips_path): |
|
for item in files: |
|
item_path = os.path.join(path, item) |
|
if item.startswith('added_') and item.endswith('.index'): |
|
index_file = True |
|
if os.path.exists(item_path): |
|
if os.path.exists(os.path.join(logs_dir, item)): |
|
os.remove(os.path.join(logs_dir, item)) |
|
shutil.move(item_path, logs_dir) |
|
if item.startswith('total_fea.npy') or item.startswith('events.'): |
|
if os.path.exists(item_path): |
|
if os.path.exists(os.path.join(logs_dir, item)): |
|
os.remove(os.path.join(logs_dir, item)) |
|
shutil.move(item_path, logs_dir) |
|
|
|
|
|
result = "" |
|
if model_file: |
|
if index_file: |
|
print(i18n("The model works for inference, and has the .index file.")) |
|
infos.append("\n" + i18n("The model works for inference, and has the .index file.")) |
|
yield "\n".join(infos) |
|
else: |
|
print(i18n("The model works for inference, but it doesn't have the .index file.")) |
|
infos.append("\n" + i18n("The model works for inference, but it doesn't have the .index file.")) |
|
yield "\n".join(infos) |
|
|
|
if not index_file and not model_file: |
|
print(i18n("No relevant file was found to upload.")) |
|
infos.append(i18n("No relevant file was found to upload.")) |
|
yield "\n".join(infos) |
|
|
|
if os.path.exists(zips_path): |
|
shutil.rmtree(zips_path) |
|
if os.path.exists(unzips_path): |
|
shutil.rmtree(unzips_path) |
|
os.chdir(parent_path) |
|
return result |
|
except Exception as e: |
|
os.chdir(parent_path) |
|
if "too much use" in str(e): |
|
print(i18n("Too many users have recently viewed or downloaded this file")) |
|
yield i18n("Too many users have recently viewed or downloaded this file") |
|
elif "private link" in str(e): |
|
print(i18n("Cannot get file from this private link")) |
|
yield i18n("Cannot get file from this private link") |
|
else: |
|
print(e) |
|
yield i18n("An error occurred downloading") |
|
finally: |
|
os.chdir(parent_path) |
|
|
|
def load_dowloaded_dataset(url): |
|
parent_path = find_folder_parent(".", "pretrained_v2") |
|
infos = [] |
|
try: |
|
zips_path = os.path.join(parent_path, 'zips') |
|
unzips_path = os.path.join(parent_path, 'unzips') |
|
datasets_path = os.path.join(parent_path, 'datasets') |
|
audio_extenions =['wav', 'mp3', 'flac', 'ogg', 'opus', |
|
'm4a', 'mp4', 'aac', 'alac', 'wma', |
|
'aiff', 'webm', 'ac3'] |
|
|
|
if os.path.exists(zips_path): |
|
shutil.rmtree(zips_path) |
|
if os.path.exists(unzips_path): |
|
shutil.rmtree(unzips_path) |
|
|
|
if not os.path.exists(datasets_path): |
|
os.mkdir(datasets_path) |
|
|
|
os.mkdir(zips_path) |
|
os.mkdir(unzips_path) |
|
|
|
download_file = download_from_url(url) |
|
|
|
if not download_file: |
|
print(i18n("An error occurred downloading")) |
|
infos.append(i18n("An error occurred downloading")) |
|
yield "\n".join(infos) |
|
raise Exception(i18n("An error occurred downloading")) |
|
elif download_file == "downloaded": |
|
print(i18n("It has been downloaded successfully.")) |
|
infos.append(i18n("It has been downloaded successfully.")) |
|
yield "\n".join(infos) |
|
elif download_file == "too much use": |
|
raise Exception(i18n("Too many users have recently viewed or downloaded this file")) |
|
elif download_file == "private link": |
|
raise Exception(i18n("Cannot get file from this private link")) |
|
|
|
zip_path = os.listdir(zips_path) |
|
foldername = "" |
|
for file in zip_path: |
|
if file.endswith('.zip'): |
|
file_path = os.path.join(zips_path, file) |
|
print("....") |
|
foldername = file.replace(".zip","").replace(" ","").replace("-","_") |
|
dataset_path = os.path.join(datasets_path, foldername) |
|
print(i18n("Proceeding with the extraction...")) |
|
infos.append(i18n("Proceeding with the extraction...")) |
|
yield "\n".join(infos) |
|
shutil.unpack_archive(file_path, unzips_path, 'zip') |
|
if os.path.exists(dataset_path): |
|
shutil.rmtree(dataset_path) |
|
|
|
os.mkdir(dataset_path) |
|
|
|
for root, subfolders, songs in os.walk(unzips_path): |
|
for song in songs: |
|
song_path = os.path.join(root, song) |
|
if song.endswith(tuple(audio_extenions)): |
|
formatted_song_name = format_title(os.path.splitext(song)[0]) |
|
extension = os.path.splitext(song)[1] |
|
new_song_path = os.path.join(dataset_path, f"{formatted_song_name}{extension}") |
|
shutil.move(song_path, new_song_path) |
|
else: |
|
print(i18n("Unzip error.")) |
|
infos.append(i18n("Unzip error.")) |
|
yield "\n".join(infos) |
|
|
|
|
|
|
|
if os.path.exists(zips_path): |
|
shutil.rmtree(zips_path) |
|
if os.path.exists(unzips_path): |
|
shutil.rmtree(unzips_path) |
|
|
|
print(i18n("The Dataset has been loaded successfully.")) |
|
infos.append(i18n("The Dataset has been loaded successfully.")) |
|
yield "\n".join(infos) |
|
except Exception as e: |
|
os.chdir(parent_path) |
|
if "too much use" in str(e): |
|
print(i18n("Too many users have recently viewed or downloaded this file")) |
|
yield i18n("Too many users have recently viewed or downloaded this file") |
|
elif "private link" in str(e): |
|
print(i18n("Cannot get file from this private link")) |
|
yield i18n("Cannot get file from this private link") |
|
else: |
|
print(e) |
|
yield i18n("An error occurred downloading") |
|
finally: |
|
os.chdir(parent_path) |
|
|
|
def save_model(modelname, save_action): |
|
|
|
parent_path = find_folder_parent(".", "pretrained_v2") |
|
zips_path = os.path.join(parent_path, 'zips') |
|
dst = os.path.join(zips_path,modelname) |
|
logs_path = os.path.join(parent_path, 'logs', modelname) |
|
weights_path = os.path.join(parent_path, 'weights', f"{modelname}.pth") |
|
save_folder = parent_path |
|
infos = [] |
|
|
|
try: |
|
if not os.path.exists(logs_path): |
|
raise Exception("No model found.") |
|
|
|
if not 'content' in parent_path: |
|
save_folder = os.path.join(parent_path, 'RVC_Backup') |
|
else: |
|
save_folder = '/content/drive/MyDrive/RVC_Backup' |
|
|
|
infos.append(i18n("Save model")) |
|
yield "\n".join(infos) |
|
|
|
if not os.path.exists(save_folder): |
|
os.mkdir(save_folder) |
|
if not os.path.exists(os.path.join(save_folder, 'ManualTrainingBackup')): |
|
os.mkdir(os.path.join(save_folder, 'ManualTrainingBackup')) |
|
if not os.path.exists(os.path.join(save_folder, 'Finished')): |
|
os.mkdir(os.path.join(save_folder, 'Finished')) |
|
|
|
if os.path.exists(zips_path): |
|
shutil.rmtree(zips_path) |
|
|
|
os.mkdir(zips_path) |
|
added_file = glob.glob(os.path.join(logs_path, "added_*.index")) |
|
d_file = glob.glob(os.path.join(logs_path, "D_*.pth")) |
|
g_file = glob.glob(os.path.join(logs_path, "G_*.pth")) |
|
|
|
if save_action == i18n("Choose the method"): |
|
raise Exception("No method choosen.") |
|
|
|
if save_action == i18n("Save all"): |
|
print(i18n("Save all")) |
|
save_folder = os.path.join(save_folder, 'ManualTrainingBackup') |
|
shutil.copytree(logs_path, dst) |
|
else: |
|
if not os.path.exists(dst): |
|
os.mkdir(dst) |
|
|
|
if save_action == i18n("Save D and G"): |
|
print(i18n("Save D and G")) |
|
save_folder = os.path.join(save_folder, 'ManualTrainingBackup') |
|
if len(d_file) > 0: |
|
shutil.copy(d_file[0], dst) |
|
if len(g_file) > 0: |
|
shutil.copy(g_file[0], dst) |
|
|
|
if len(added_file) > 0: |
|
shutil.copy(added_file[0], dst) |
|
else: |
|
infos.append(i18n("Saved without index...")) |
|
|
|
if save_action == i18n("Save voice"): |
|
print(i18n("Save voice")) |
|
save_folder = os.path.join(save_folder, 'Finished') |
|
if len(added_file) > 0: |
|
shutil.copy(added_file[0], dst) |
|
else: |
|
infos.append(i18n("Saved without index...")) |
|
|
|
yield "\n".join(infos) |
|
if not os.path.exists(weights_path): |
|
infos.append(i18n("Saved without inference model...")) |
|
else: |
|
shutil.copy(weights_path, dst) |
|
|
|
yield "\n".join(infos) |
|
infos.append("\n" + i18n("This may take a few minutes, please wait...")) |
|
yield "\n".join(infos) |
|
|
|
shutil.make_archive(os.path.join(zips_path,f"{modelname}"), 'zip', zips_path) |
|
shutil.move(os.path.join(zips_path,f"{modelname}.zip"), os.path.join(save_folder, f'{modelname}.zip')) |
|
|
|
shutil.rmtree(zips_path) |
|
infos.append("\n" + i18n("Model saved successfully")) |
|
yield "\n".join(infos) |
|
|
|
except Exception as e: |
|
print(e) |
|
if "No model found." in str(e): |
|
infos.append(i18n("The model you want to save does not exist, be sure to enter the correct name.")) |
|
else: |
|
infos.append(i18n("An error occurred saving the model")) |
|
|
|
yield "\n".join(infos) |
|
|
|
def load_downloaded_backup(url): |
|
parent_path = find_folder_parent(".", "pretrained_v2") |
|
try: |
|
infos = [] |
|
logs_folders = ['0_gt_wavs','1_16k_wavs','2a_f0','2b-f0nsf','3_feature256','3_feature768'] |
|
zips_path = os.path.join(parent_path, 'zips') |
|
unzips_path = os.path.join(parent_path, 'unzips') |
|
weights_path = os.path.join(parent_path, 'weights') |
|
logs_dir = os.path.join(parent_path, 'logs') |
|
|
|
if os.path.exists(zips_path): |
|
shutil.rmtree(zips_path) |
|
if os.path.exists(unzips_path): |
|
shutil.rmtree(unzips_path) |
|
|
|
os.mkdir(zips_path) |
|
os.mkdir(unzips_path) |
|
|
|
download_file = download_from_url(url) |
|
if not download_file: |
|
print(i18n("The file could not be downloaded.")) |
|
infos.append(i18n("The file could not be downloaded.")) |
|
yield "\n".join(infos) |
|
elif download_file == "downloaded": |
|
print(i18n("It has been downloaded successfully.")) |
|
infos.append(i18n("It has been downloaded successfully.")) |
|
yield "\n".join(infos) |
|
elif download_file == "too much use": |
|
raise Exception(i18n("Too many users have recently viewed or downloaded this file")) |
|
elif download_file == "private link": |
|
raise Exception(i18n("Cannot get file from this private link")) |
|
|
|
for filename in os.listdir(zips_path): |
|
if filename.endswith(".zip"): |
|
zipfile_path = os.path.join(zips_path,filename) |
|
zip_dir_name = os.path.splitext(filename)[0] |
|
unzip_dir = unzips_path |
|
print(i18n("Proceeding with the extraction...")) |
|
infos.append(i18n("Proceeding with the extraction...")) |
|
shutil.unpack_archive(zipfile_path, unzip_dir, 'zip') |
|
|
|
if os.path.exists(os.path.join(unzip_dir, zip_dir_name)): |
|
shutil.move(os.path.join(unzip_dir, zip_dir_name), logs_dir) |
|
else: |
|
new_folder_path = os.path.join(logs_dir, zip_dir_name) |
|
os.mkdir(new_folder_path) |
|
for item_name in os.listdir(unzip_dir): |
|
item_path = os.path.join(unzip_dir, item_name) |
|
if os.path.isfile(item_path): |
|
shutil.move(item_path, new_folder_path) |
|
elif os.path.isdir(item_path): |
|
shutil.move(item_path, new_folder_path) |
|
|
|
yield "\n".join(infos) |
|
else: |
|
print(i18n("Unzip error.")) |
|
infos.append(i18n("Unzip error.")) |
|
yield "\n".join(infos) |
|
|
|
result = "" |
|
|
|
for filename in os.listdir(unzips_path): |
|
if filename.endswith(".zip"): |
|
silentremove(filename) |
|
|
|
if os.path.exists(zips_path): |
|
shutil.rmtree(zips_path) |
|
if os.path.exists(os.path.join(parent_path, 'unzips')): |
|
shutil.rmtree(os.path.join(parent_path, 'unzips')) |
|
print(i18n("The Backup has been uploaded successfully.")) |
|
infos.append("\n" + i18n("The Backup has been uploaded successfully.")) |
|
yield "\n".join(infos) |
|
os.chdir(parent_path) |
|
return result |
|
except Exception as e: |
|
os.chdir(parent_path) |
|
if "too much use" in str(e): |
|
print(i18n("Too many users have recently viewed or downloaded this file")) |
|
yield i18n("Too many users have recently viewed or downloaded this file") |
|
elif "private link" in str(e): |
|
print(i18n("Cannot get file from this private link")) |
|
yield i18n("Cannot get file from this private link") |
|
else: |
|
print(e) |
|
yield i18n("An error occurred downloading") |
|
finally: |
|
os.chdir(parent_path) |
|
|
|
def save_to_wav(record_button): |
|
if record_button is None: |
|
pass |
|
else: |
|
path_to_file=record_button |
|
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav' |
|
new_path='./audios/'+new_name |
|
shutil.move(path_to_file,new_path) |
|
return new_name |
|
|
|
|
|
def change_choices2(): |
|
audio_paths=[] |
|
for filename in os.listdir("./audios"): |
|
if filename.endswith(('wav', 'mp3', 'flac', 'ogg', 'opus', |
|
'm4a', 'mp4', 'aac', 'alac', 'wma', |
|
'aiff', 'webm', 'ac3')): |
|
audio_paths.append(os.path.join('./audios',filename).replace('\\', '/')) |
|
return {"choices": sorted(audio_paths), "__type__": "update"}, {"__type__": "update"} |
|
|
|
|
|
|
|
|
|
|
|
def uvr(input_url, output_path, model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0, architecture): |
|
carpeta_a_eliminar = "yt_downloads" |
|
if os.path.exists(carpeta_a_eliminar) and os.path.isdir(carpeta_a_eliminar): |
|
for archivo in os.listdir(carpeta_a_eliminar): |
|
ruta_archivo = os.path.join(carpeta_a_eliminar, archivo) |
|
if os.path.isfile(ruta_archivo): |
|
os.remove(ruta_archivo) |
|
elif os.path.isdir(ruta_archivo): |
|
shutil.rmtree(ruta_archivo) |
|
|
|
|
|
|
|
ydl_opts = { |
|
'no-windows-filenames': True, |
|
'restrict-filenames': True, |
|
'extract_audio': True, |
|
'format': 'bestaudio', |
|
'quiet': True, |
|
'no-warnings': True, |
|
} |
|
|
|
try: |
|
print(i18n("Downloading audio from the video...")) |
|
with yt_dlp.YoutubeDL(ydl_opts) as ydl: |
|
info_dict = ydl.extract_info(input_url, download=False) |
|
formatted_title = format_title(info_dict.get('title', 'default_title')) |
|
formatted_outtmpl = output_path + '/' + formatted_title + '.wav' |
|
ydl_opts['outtmpl'] = formatted_outtmpl |
|
ydl = yt_dlp.YoutubeDL(ydl_opts) |
|
ydl.download([input_url]) |
|
print(i18n("Audio downloaded!")) |
|
except Exception as error: |
|
print(i18n("An error occurred:"), error) |
|
|
|
actual_directory = os.path.dirname(__file__) |
|
|
|
vocal_directory = os.path.join(actual_directory, save_root_vocal) |
|
instrumental_directory = os.path.join(actual_directory, save_root_ins) |
|
|
|
vocal_formatted = f"vocal_{formatted_title}.wav.reformatted.wav_10.wav" |
|
instrumental_formatted = f"instrument_{formatted_title}.wav.reformatted.wav_10.wav" |
|
|
|
vocal_audio_path = os.path.join(vocal_directory, vocal_formatted) |
|
instrumental_audio_path = os.path.join(instrumental_directory, instrumental_formatted) |
|
|
|
vocal_formatted_mdx = f"{formatted_title}_vocal_.wav" |
|
instrumental_formatted_mdx = f"{formatted_title}_instrument_.wav" |
|
|
|
vocal_audio_path_mdx = os.path.join(vocal_directory, vocal_formatted_mdx) |
|
instrumental_audio_path_mdx = os.path.join(instrumental_directory, instrumental_formatted_mdx) |
|
|
|
if architecture == "VR": |
|
try: |
|
print(i18n("Starting audio conversion... (This might take a moment)")) |
|
inp_root, save_root_vocal, save_root_ins = [x.strip(" ").strip('"').strip("\n").strip('"').strip(" ") for x in [inp_root, save_root_vocal, save_root_ins]] |
|
usable_files = [os.path.join(inp_root, file) |
|
for file in os.listdir(inp_root) |
|
if file.endswith(tuple(sup_audioext))] |
|
|
|
|
|
pre_fun = MDXNetDereverb(15) if model_name == "onnx_dereverb_By_FoxJoy" else (_audio_pre_ if "DeEcho" not in model_name else _audio_pre_new)( |
|
agg=int(agg), |
|
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"), |
|
device=config.device, |
|
is_half=config.is_half, |
|
) |
|
|
|
try: |
|
if paths != None: |
|
paths = [path.name for path in paths] |
|
else: |
|
paths = usable_files |
|
|
|
except: |
|
traceback.print_exc() |
|
paths = usable_files |
|
print(paths) |
|
for path in paths: |
|
inp_path = os.path.join(inp_root, path) |
|
need_reformat, done = 1, 0 |
|
|
|
try: |
|
info = ffmpeg.probe(inp_path, cmd="ffprobe") |
|
if info["streams"][0]["channels"] == 2 and info["streams"][0]["sample_rate"] == "44100": |
|
need_reformat = 0 |
|
pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal, format0) |
|
done = 1 |
|
except: |
|
traceback.print_exc() |
|
|
|
if need_reformat: |
|
tmp_path = f"{tmp}/{os.path.basename(inp_path)}.reformatted.wav" |
|
os.system(f"ffmpeg -i {inp_path} -vn -acodec pcm_s16le -ac 2 -ar 44100 {tmp_path} -y") |
|
inp_path = tmp_path |
|
|
|
try: |
|
if not done: |
|
pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal, format0) |
|
print(f"{os.path.basename(inp_path)}->Success") |
|
except: |
|
print(f"{os.path.basename(inp_path)}->{traceback.format_exc()}") |
|
except: |
|
traceback.print_exc() |
|
finally: |
|
try: |
|
if model_name == "onnx_dereverb_By_FoxJoy": |
|
del pre_fun.pred.model |
|
del pre_fun.pred.model_ |
|
else: |
|
del pre_fun.model |
|
|
|
del pre_fun |
|
return i18n("Finished"), vocal_audio_path, instrumental_audio_path |
|
except: traceback.print_exc() |
|
|
|
if torch.cuda.is_available(): torch.cuda.empty_cache() |
|
|
|
elif architecture == "MDX": |
|
try: |
|
print(i18n("Starting audio conversion... (This might take a moment)")) |
|
inp_root, save_root_vocal, save_root_ins = [x.strip(" ").strip('"').strip("\n").strip('"').strip(" ") for x in [inp_root, save_root_vocal, save_root_ins]] |
|
|
|
usable_files = [os.path.join(inp_root, file) |
|
for file in os.listdir(inp_root) |
|
if file.endswith(tuple(sup_audioext))] |
|
try: |
|
if paths != None: |
|
paths = [path.name for path in paths] |
|
else: |
|
paths = usable_files |
|
|
|
except: |
|
traceback.print_exc() |
|
paths = usable_files |
|
print(paths) |
|
invert=True |
|
denoise=True |
|
use_custom_parameter=True |
|
dim_f=2048 |
|
dim_t=256 |
|
n_fft=7680 |
|
use_custom_compensation=True |
|
compensation=1.025 |
|
suffix = "vocal_" |
|
suffix_invert = "instrument_" |
|
print_settings = True |
|
onnx = id_to_ptm(model_name) |
|
compensation = compensation if use_custom_compensation or use_custom_parameter else None |
|
mdx_model = prepare_mdx(onnx,use_custom_parameter, dim_f, dim_t, n_fft, compensation=compensation) |
|
|
|
|
|
for path in paths: |
|
|
|
suffix_naming = suffix if use_custom_parameter else None |
|
diff_suffix_naming = suffix_invert if use_custom_parameter else None |
|
run_mdx(onnx, mdx_model, path, format0, diff=invert,suffix=suffix_naming,diff_suffix=diff_suffix_naming,denoise=denoise) |
|
|
|
if print_settings: |
|
print() |
|
print('[MDX-Net_Colab settings used]') |
|
print(f'Model used: {onnx}') |
|
print(f'Model MD5: {mdx.MDX.get_hash(onnx)}') |
|
print(f'Model parameters:') |
|
print(f' -dim_f: {mdx_model.dim_f}') |
|
print(f' -dim_t: {mdx_model.dim_t}') |
|
print(f' -n_fft: {mdx_model.n_fft}') |
|
print(f' -compensation: {mdx_model.compensation}') |
|
print() |
|
print('[Input file]') |
|
print('filename(s): ') |
|
for filename in paths: |
|
print(f' -{filename}') |
|
print(f"{os.path.basename(filename)}->Success") |
|
except: |
|
traceback.print_exc() |
|
finally: |
|
try: |
|
del mdx_model |
|
return i18n("Finished"), vocal_audio_path_mdx, instrumental_audio_path_mdx |
|
except: traceback.print_exc() |
|
|
|
print("clean_empty_cache") |
|
|
|
if torch.cuda.is_available(): torch.cuda.empty_cache() |
|
sup_audioext = {'wav', 'mp3', 'flac', 'ogg', 'opus', |
|
'm4a', 'mp4', 'aac', 'alac', 'wma', |
|
'aiff', 'webm', 'ac3'} |
|
|
|
def load_downloaded_audio(url): |
|
parent_path = find_folder_parent(".", "pretrained_v2") |
|
try: |
|
infos = [] |
|
audios_path = os.path.join(parent_path, 'audios') |
|
zips_path = os.path.join(parent_path, 'zips') |
|
|
|
if not os.path.exists(audios_path): |
|
os.mkdir(audios_path) |
|
|
|
download_file = download_from_url(url) |
|
if not download_file: |
|
print(i18n("The file could not be downloaded.")) |
|
infos.append(i18n("The file could not be downloaded.")) |
|
yield "\n".join(infos) |
|
elif download_file == "downloaded": |
|
print(i18n("It has been downloaded successfully.")) |
|
infos.append(i18n("It has been downloaded successfully.")) |
|
yield "\n".join(infos) |
|
elif download_file == "too much use": |
|
raise Exception(i18n("Too many users have recently viewed or downloaded this file")) |
|
elif download_file == "private link": |
|
raise Exception(i18n("Cannot get file from this private link")) |
|
|
|
for filename in os.listdir(zips_path): |
|
item_path = os.path.join(zips_path, filename) |
|
if item_path.split('.')[-1] in sup_audioext: |
|
if os.path.exists(item_path): |
|
shutil.move(item_path, audios_path) |
|
|
|
result = "" |
|
print(i18n("Audio files have been moved to the 'audios' folder.")) |
|
infos.append(i18n("Audio files have been moved to the 'audios' folder.")) |
|
yield "\n".join(infos) |
|
|
|
os.chdir(parent_path) |
|
return result |
|
except Exception as e: |
|
os.chdir(parent_path) |
|
if "too much use" in str(e): |
|
print(i18n("Too many users have recently viewed or downloaded this file")) |
|
yield i18n("Too many users have recently viewed or downloaded this file") |
|
elif "private link" in str(e): |
|
print(i18n("Cannot get file from this private link")) |
|
yield i18n("Cannot get file from this private link") |
|
else: |
|
print(e) |
|
yield i18n("An error occurred downloading") |
|
finally: |
|
os.chdir(parent_path) |
|
|
|
|
|
class error_message(Exception): |
|
def __init__(self, mensaje): |
|
self.mensaje = mensaje |
|
super().__init__(mensaje) |
|
|
|
def get_vc(sid, to_return_protect0, to_return_protect1): |
|
global n_spk, tgt_sr, net_g, vc, cpt, version |
|
if sid == "" or sid == []: |
|
global hubert_model |
|
if hubert_model is not None: |
|
print("clean_empty_cache") |
|
del net_g, n_spk, vc, hubert_model, tgt_sr |
|
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
if_f0 = cpt.get("f0", 1) |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid( |
|
*cpt["config"], is_half=config.is_half |
|
) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid( |
|
*cpt["config"], is_half=config.is_half |
|
) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g, cpt |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
cpt = None |
|
return ( |
|
{"visible": False, "__type__": "update"}, |
|
{"visible": False, "__type__": "update"}, |
|
{"visible": False, "__type__": "update"}, |
|
) |
|
person = "%s/%s" % (weight_root, sid) |
|
print("loading %s" % person) |
|
cpt = torch.load(person, map_location="cpu") |
|
tgt_sr = cpt["config"][-1] |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
if_f0 = cpt.get("f0", 1) |
|
if if_f0 == 0: |
|
to_return_protect0 = to_return_protect1 = { |
|
"visible": False, |
|
"value": 0.5, |
|
"__type__": "update", |
|
} |
|
else: |
|
to_return_protect0 = { |
|
"visible": True, |
|
"value": to_return_protect0, |
|
"__type__": "update", |
|
} |
|
to_return_protect1 = { |
|
"visible": True, |
|
"value": to_return_protect1, |
|
"__type__": "update", |
|
} |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g.enc_q |
|
print(net_g.load_state_dict(cpt["weight"], strict=False)) |
|
net_g.eval().to(config.device) |
|
if config.is_half: |
|
net_g = net_g.half() |
|
else: |
|
net_g = net_g.float() |
|
vc = VC(tgt_sr, config) |
|
n_spk = cpt["config"][-3] |
|
return ( |
|
{"visible": True, "maximum": n_spk, "__type__": "update"}, |
|
to_return_protect0, |
|
to_return_protect1, |
|
) |
|
|
|
def update_model_choices(select_value): |
|
model_ids = get_model_list() |
|
model_ids_list = list(model_ids) |
|
if select_value == "VR": |
|
return {"choices": uvr5_names, "__type__": "update"} |
|
elif select_value == "MDX": |
|
return {"choices": model_ids_list, "__type__": "update"} |
|
|
|
def download_model(): |
|
gr.Markdown(value="# " + i18n("Download Model")) |
|
gr.Markdown(value=i18n("It is used to download your inference models.")) |
|
with gr.Row(): |
|
model_url=gr.Textbox(label=i18n("Url:")) |
|
with gr.Row(): |
|
download_model_status_bar=gr.Textbox(label=i18n("Status:")) |
|
with gr.Row(): |
|
download_button=gr.Button(i18n("Download")) |
|
download_button.click(fn=load_downloaded_model, inputs=[model_url], outputs=[download_model_status_bar]) |
|
|
|
def download_backup(): |
|
gr.Markdown(value="# " + i18n("Download Backup")) |
|
gr.Markdown(value=i18n("It is used to download your training backups.")) |
|
with gr.Row(): |
|
model_url=gr.Textbox(label=i18n("Url:")) |
|
with gr.Row(): |
|
download_model_status_bar=gr.Textbox(label=i18n("Status:")) |
|
with gr.Row(): |
|
download_button=gr.Button(i18n("Download")) |
|
download_button.click(fn=load_downloaded_backup, inputs=[model_url], outputs=[download_model_status_bar]) |
|
|
|
def update_dataset_list(name): |
|
new_datasets = [] |
|
for foldername in os.listdir("./datasets"): |
|
if "." not in foldername: |
|
new_datasets.append(os.path.join(find_folder_parent(".","pretrained"),"datasets",foldername)) |
|
return gr.Dropdown.update(choices=new_datasets) |
|
|
|
def download_dataset(trainset_dir4): |
|
gr.Markdown(value="# " + i18n("Download Dataset")) |
|
gr.Markdown(value=i18n("Download the dataset with the audios in a compatible format (.wav/.flac) to train your model.")) |
|
with gr.Row(): |
|
dataset_url=gr.Textbox(label=i18n("Url:")) |
|
with gr.Row(): |
|
load_dataset_status_bar=gr.Textbox(label=i18n("Status:")) |
|
with gr.Row(): |
|
load_dataset_button=gr.Button(i18n("Download")) |
|
load_dataset_button.click(fn=load_dowloaded_dataset, inputs=[dataset_url], outputs=[load_dataset_status_bar]) |
|
load_dataset_status_bar.change(update_dataset_list, dataset_url, trainset_dir4) |
|
|
|
def download_audio(): |
|
gr.Markdown(value="# " + i18n("Download Audio")) |
|
gr.Markdown(value=i18n("Download audios of any format for use in inference (recommended for mobile users).")) |
|
with gr.Row(): |
|
audio_url=gr.Textbox(label=i18n("Url:")) |
|
with gr.Row(): |
|
download_audio_status_bar=gr.Textbox(label=i18n("Status:")) |
|
with gr.Row(): |
|
download_button2=gr.Button(i18n("Download")) |
|
download_button2.click(fn=load_downloaded_audio, inputs=[audio_url], outputs=[download_audio_status_bar]) |
|
|
|
def youtube_separator(): |
|
gr.Markdown(value="# " + i18n("Separate YouTube tracks")) |
|
gr.Markdown(value=i18n("Download audio from a YouTube video and automatically separate the vocal and instrumental tracks")) |
|
with gr.Row(): |
|
input_url = gr.inputs.Textbox(label=i18n("Enter the YouTube link:")) |
|
output_path = gr.Textbox( |
|
label=i18n("Enter the path of the audio folder to be processed (copy it from the address bar of the file manager):"), |
|
value=os.path.abspath(os.getcwd()).replace('\\', '/') + "/yt_downloads", |
|
visible=False, |
|
) |
|
advanced_settings_checkbox = gr.Checkbox( |
|
value=False, |
|
label=i18n("Advanced Settings"), |
|
interactive=True, |
|
) |
|
with gr.Row(label = i18n("Advanced Settings"), visible=False, variant='compact') as advanced_settings: |
|
with gr.Column(): |
|
model_select = gr.Radio( |
|
label=i18n("Model Architecture:"), |
|
choices=["VR", "MDX"], |
|
value="VR", |
|
interactive=True, |
|
) |
|
model_choose = gr.Dropdown(label=i18n("Model: (Be aware that in some models the named vocal will be the instrumental)"), |
|
choices=uvr5_names, |
|
value="HP5_only_main_vocal" |
|
) |
|
with gr.Row(): |
|
agg = gr.Slider( |
|
minimum=0, |
|
maximum=20, |
|
step=1, |
|
label=i18n("Vocal Extraction Aggressive"), |
|
value=10, |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
opt_vocal_root = gr.Textbox( |
|
label=i18n("Specify the output folder for vocals:"), value="audios", |
|
) |
|
opt_ins_root = gr.Textbox( |
|
label=i18n("Specify the output folder for accompaniment:"), value="audio-others", |
|
) |
|
dir_wav_input = gr.Textbox( |
|
label=i18n("Enter the path of the audio folder to be processed:"), |
|
value=((os.getcwd()).replace('\\', '/') + "/yt_downloads"), |
|
visible=False, |
|
) |
|
format0 = gr.Radio( |
|
label=i18n("Export file format"), |
|
choices=["wav", "flac", "mp3", "m4a"], |
|
value="wav", |
|
visible=False, |
|
interactive=True, |
|
) |
|
wav_inputs = gr.File( |
|
file_count="multiple", label=i18n("You can also input audio files in batches. Choose one of the two options. Priority is given to reading from the folder."), |
|
visible=False, |
|
) |
|
model_select.change( |
|
fn=update_model_choices, |
|
inputs=model_select, |
|
outputs=model_choose, |
|
) |
|
with gr.Row(): |
|
vc_output4 = gr.Textbox(label=i18n("Status:")) |
|
vc_output5 = gr.Audio(label=i18n("Vocal"), type='filepath') |
|
vc_output6 = gr.Audio(label=i18n("Instrumental"), type='filepath') |
|
with gr.Row(): |
|
but2 = gr.Button(i18n("Download and Separate")) |
|
but2.click( |
|
uvr, |
|
[ |
|
input_url, |
|
output_path, |
|
model_choose, |
|
dir_wav_input, |
|
opt_vocal_root, |
|
wav_inputs, |
|
opt_ins_root, |
|
agg, |
|
format0, |
|
model_select |
|
], |
|
[vc_output4, vc_output5, vc_output6], |
|
) |
|
def toggle_advanced_settings(checkbox): |
|
return {"visible": checkbox, "__type__": "update"} |
|
|
|
advanced_settings_checkbox.change( |
|
fn=toggle_advanced_settings, |
|
inputs=[advanced_settings_checkbox], |
|
outputs=[advanced_settings] |
|
) |
|
|
|
|
|
def get_bark_voice(): |
|
mensaje = """ |
|
v2/en_speaker_0 English Male |
|
v2/en_speaker_1 English Male |
|
v2/en_speaker_2 English Male |
|
v2/en_speaker_3 English Male |
|
v2/en_speaker_4 English Male |
|
v2/en_speaker_5 English Male |
|
v2/en_speaker_6 English Male |
|
v2/en_speaker_7 English Male |
|
v2/en_speaker_8 English Male |
|
v2/en_speaker_9 English Female |
|
v2/zh_speaker_0 Chinese (Simplified) Male |
|
v2/zh_speaker_1 Chinese (Simplified) Male |
|
v2/zh_speaker_2 Chinese (Simplified) Male |
|
v2/zh_speaker_3 Chinese (Simplified) Male |
|
v2/zh_speaker_4 Chinese (Simplified) Female |
|
v2/zh_speaker_5 Chinese (Simplified) Male |
|
v2/zh_speaker_6 Chinese (Simplified) Female |
|
v2/zh_speaker_7 Chinese (Simplified) Female |
|
v2/zh_speaker_8 Chinese (Simplified) Male |
|
v2/zh_speaker_9 Chinese (Simplified) Female |
|
v2/fr_speaker_0 French Male |
|
v2/fr_speaker_1 French Female |
|
v2/fr_speaker_2 French Female |
|
v2/fr_speaker_3 French Male |
|
v2/fr_speaker_4 French Male |
|
v2/fr_speaker_5 French Female |
|
v2/fr_speaker_6 French Male |
|
v2/fr_speaker_7 French Male |
|
v2/fr_speaker_8 French Male |
|
v2/fr_speaker_9 French Male |
|
v2/de_speaker_0 German Male |
|
v2/de_speaker_1 German Male |
|
v2/de_speaker_2 German Male |
|
v2/de_speaker_3 German Female |
|
v2/de_speaker_4 German Male |
|
v2/de_speaker_5 German Male |
|
v2/de_speaker_6 German Male |
|
v2/de_speaker_7 German Male |
|
v2/de_speaker_8 German Female |
|
v2/de_speaker_9 German Male |
|
v2/hi_speaker_0 Hindi Female |
|
v2/hi_speaker_1 Hindi Female |
|
v2/hi_speaker_2 Hindi Male |
|
v2/hi_speaker_3 Hindi Female |
|
v2/hi_speaker_4 Hindi Female |
|
v2/hi_speaker_5 Hindi Male |
|
v2/hi_speaker_6 Hindi Male |
|
v2/hi_speaker_7 Hindi Male |
|
v2/hi_speaker_8 Hindi Male |
|
v2/hi_speaker_9 Hindi Female |
|
v2/it_speaker_0 Italian Male |
|
v2/it_speaker_1 Italian Male |
|
v2/it_speaker_2 Italian Female |
|
v2/it_speaker_3 Italian Male |
|
v2/it_speaker_4 Italian Male |
|
v2/it_speaker_5 Italian Male |
|
v2/it_speaker_6 Italian Male |
|
v2/it_speaker_7 Italian Female |
|
v2/it_speaker_8 Italian Male |
|
v2/it_speaker_9 Italian Female |
|
v2/ja_speaker_0 Japanese Female |
|
v2/ja_speaker_1 Japanese Female |
|
v2/ja_speaker_2 Japanese Male |
|
v2/ja_speaker_3 Japanese Female |
|
v2/ja_speaker_4 Japanese Female |
|
v2/ja_speaker_5 Japanese Female |
|
v2/ja_speaker_6 Japanese Male |
|
v2/ja_speaker_7 Japanese Female |
|
v2/ja_speaker_8 Japanese Female |
|
v2/ja_speaker_9 Japanese Female |
|
v2/ko_speaker_0 Korean Female |
|
v2/ko_speaker_1 Korean Male |
|
v2/ko_speaker_2 Korean Male |
|
v2/ko_speaker_3 Korean Male |
|
v2/ko_speaker_4 Korean Male |
|
v2/ko_speaker_5 Korean Male |
|
v2/ko_speaker_6 Korean Male |
|
v2/ko_speaker_7 Korean Male |
|
v2/ko_speaker_8 Korean Male |
|
v2/ko_speaker_9 Korean Male |
|
v2/pl_speaker_0 Polish Male |
|
v2/pl_speaker_1 Polish Male |
|
v2/pl_speaker_2 Polish Male |
|
v2/pl_speaker_3 Polish Male |
|
v2/pl_speaker_4 Polish Female |
|
v2/pl_speaker_5 Polish Male |
|
v2/pl_speaker_6 Polish Female |
|
v2/pl_speaker_7 Polish Male |
|
v2/pl_speaker_8 Polish Male |
|
v2/pl_speaker_9 Polish Female |
|
v2/pt_speaker_0 Portuguese Male |
|
v2/pt_speaker_1 Portuguese Male |
|
v2/pt_speaker_2 Portuguese Male |
|
v2/pt_speaker_3 Portuguese Male |
|
v2/pt_speaker_4 Portuguese Male |
|
v2/pt_speaker_5 Portuguese Male |
|
v2/pt_speaker_6 Portuguese Male |
|
v2/pt_speaker_7 Portuguese Male |
|
v2/pt_speaker_8 Portuguese Male |
|
v2/pt_speaker_9 Portuguese Male |
|
v2/ru_speaker_0 Russian Male |
|
v2/ru_speaker_1 Russian Male |
|
v2/ru_speaker_2 Russian Male |
|
v2/ru_speaker_3 Russian Male |
|
v2/ru_speaker_4 Russian Male |
|
v2/ru_speaker_5 Russian Female |
|
v2/ru_speaker_6 Russian Female |
|
v2/ru_speaker_7 Russian Male |
|
v2/ru_speaker_8 Russian Male |
|
v2/ru_speaker_9 Russian Female |
|
v2/es_speaker_0 Spanish Male |
|
v2/es_speaker_1 Spanish Male |
|
v2/es_speaker_2 Spanish Male |
|
v2/es_speaker_3 Spanish Male |
|
v2/es_speaker_4 Spanish Male |
|
v2/es_speaker_5 Spanish Male |
|
v2/es_speaker_6 Spanish Male |
|
v2/es_speaker_7 Spanish Male |
|
v2/es_speaker_8 Spanish Female |
|
v2/es_speaker_9 Spanish Female |
|
v2/tr_speaker_0 Turkish Male |
|
v2/tr_speaker_1 Turkish Male |
|
v2/tr_speaker_2 Turkish Male |
|
v2/tr_speaker_3 Turkish Male |
|
v2/tr_speaker_4 Turkish Female |
|
v2/tr_speaker_5 Turkish Female |
|
v2/tr_speaker_6 Turkish Male |
|
v2/tr_speaker_7 Turkish Male |
|
v2/tr_speaker_8 Turkish Male |
|
v2/tr_speaker_9 Turkish Male |
|
""" |
|
|
|
lineas = mensaje.split("\n") |
|
datos_deseados = [] |
|
for linea in lineas: |
|
partes = linea.split("\t") |
|
if len(partes) == 3: |
|
clave, _, genero = partes |
|
datos_deseados.append(f"{clave}-{genero}") |
|
|
|
return datos_deseados |
|
|
|
|
|
def get_edge_voice(): |
|
completed_process = subprocess.run(['edge-tts',"-l"], capture_output=True, text=True) |
|
lines = completed_process.stdout.strip().split("\n") |
|
data = [] |
|
current_entry = {} |
|
for line in lines: |
|
if line.startswith("Name: "): |
|
if current_entry: |
|
data.append(current_entry) |
|
current_entry = {"Name": line.split(": ")[1]} |
|
elif line.startswith("Gender: "): |
|
current_entry["Gender"] = line.split(": ")[1] |
|
if current_entry: |
|
data.append(current_entry) |
|
tts_voice = [] |
|
for entry in data: |
|
name = entry["Name"] |
|
gender = entry["Gender"] |
|
formatted_entry = f'{name}-{gender}' |
|
tts_voice.append(formatted_entry) |
|
return tts_voice |
|
|
|
|
|
|
|
|